# HG changeset patch # User huffman # Date 1159811822 -7200 # Node ID 863b187780bb2f9d922fbdd56d7a52861cbceb68 # Parent 68ed2e514ca052a3aac326727ee972609f76ec5b remove unused Cauchy_Bseq lemmas diff -r 68ed2e514ca0 -r 863b187780bb src/HOL/Hyperreal/SEQ.thy --- a/src/HOL/Hyperreal/SEQ.thy Mon Oct 02 18:30:10 2006 +0200 +++ b/src/HOL/Hyperreal/SEQ.thy Mon Oct 02 19:57:02 2006 +0200 @@ -807,56 +807,6 @@ apply simp done -lemma less_Suc_cancel_iff: "(n < Suc M) = (n \ M)" -by auto - -text{* Maximal element in subsequence *} -lemma SUP_subseq: - "\m \ M. \n \ M. (X::nat => 'a::linorder) n \ X m" -apply (induct M, simp) -apply clarify -apply (rule_tac x="X (Suc M)" and y="X m" in linorder_le_cases) -apply (rule_tac x="m" in exI) -apply (simp add: le_Suc_eq) -apply (rule_tac x="Suc M" in exI) -apply (simp add: le_Suc_eq) -apply (blast intro: order_trans) -done - -lemma SUP_rabs_subseq: - "\m::nat \ M. \n \ M. norm (X n) \ norm (X m)" -by (rule SUP_subseq) - -lemma lemma_Nat_covered: - "[| \m::nat. m \ M --> P M m; - \m \ M. P M m |] - ==> \m. P M m" -by (auto elim: less_asym simp add: le_def) - - -lemma lemma_trans1: - "[| \n \ M. norm ((X::nat=>'a::real_normed_vector) n) \ a; a < b |] - ==> \n \ M. norm (X n) \ b" -by (blast intro: order_le_less_trans [THEN order_less_imp_le]) - -lemma lemma_trans2: - "[| \n \ M. norm ((X::nat=>'a::real_normed_vector) n) < a; a < b |] - ==> \n \ M. norm (X n) \ b" -by (blast intro: order_less_trans [THEN order_less_imp_le]) - -lemma lemma_trans3: - "[| \n \ M. norm (X n) \ a; a = b |] - ==> \n \ M. norm (X n) \ b" -by auto - -lemma lemma_trans4: "\n \ M. norm ((X::nat=>'a::real_normed_vector) n) < a - ==> \n \ M. norm (X n) \ a" -by (blast intro: order_less_imp_le) - - -text{*Proof is more involved than outlines sketched by various authors - would suggest*} - lemma Bseq_Suc_imp_Bseq: "Bseq (\n. X (Suc n)) \ Bseq X" apply (unfold Bseq_def, clarify) apply (rule_tac x="max K (norm (X 0))" in exI)