# HG changeset patch # User haftmann # Date 1213101178 -7200 # Node ID 864d29f11c9d8532e06c2c28aa56d658d3ff2dbf # Parent 889613625e2bab5b1b81d813ab5f4e98e73435e9 slightly tuning of some proofs involving case distinction and induction on natural numbers and similar diff -r 889613625e2b -r 864d29f11c9d src/HOLCF/FOCUS/Buffer_adm.thy --- a/src/HOLCF/FOCUS/Buffer_adm.thy Mon Jun 09 17:39:35 2008 +0200 +++ b/src/HOLCF/FOCUS/Buffer_adm.thy Tue Jun 10 14:32:58 2008 +0200 @@ -68,7 +68,7 @@ prefer 2 apply ( intro strip) apply ( drule slen_mono) -apply ( drule (1) ile_trans) +apply ( drule (1) order_trans) apply (force)+ done diff -r 889613625e2b -r 864d29f11c9d src/HOLCF/FOCUS/Stream_adm.thy --- a/src/HOLCF/FOCUS/Stream_adm.thy Mon Jun 09 17:39:35 2008 +0200 +++ b/src/HOLCF/FOCUS/Stream_adm.thy Tue Jun 10 14:32:58 2008 +0200 @@ -53,13 +53,10 @@ apply (drule not_ex [THEN iffD1]) apply (subst slen_infinite) apply (erule thin_rl) -apply (drule spec) -apply (unfold linorder_not_less) -apply (erule ile_iless_trans [THEN Infty_eq [THEN iffD1]]) -apply (simp) +apply (erule_tac x = j in allE) +apply auto done - (* should be without reference to stream length? *) lemma flatstream_admI: "[|(!!Y. [| Porder.chain Y; !i. P (Y i); !k. ? j. Fin k < #((Y j)::'a::flat stream)|] ==> P(lub (range Y)))|]==> adm P" @@ -72,11 +69,7 @@ (* context (theory "Nat_InFinity");*) lemma ile_lemma: "Fin (i + j) <= x ==> Fin i <= x" -apply (rule ile_trans) -prefer 2 -apply (assumption) -apply (simp) -done + by (rule order_trans) auto lemma stream_monoP2I: "!!X. stream_monoP F ==> !i. ? l. !x y. @@ -91,7 +84,7 @@ apply (erule allE, erule all_dupE, drule mp, erule ile_lemma) apply (drule_tac P="%x. x" in subst, assumption) apply (erule allE, drule mp, rule ile_lemma) back -apply ( erule ile_trans) +apply ( erule order_trans) apply ( erule slen_mono) apply (erule ssubst) apply (safe) @@ -118,7 +111,7 @@ apply (erule allE, erule exE) apply (erule allE, erule allE, drule mp) (* stream_monoP *) apply ( drule ileI1) -apply ( drule ile_trans) +apply ( drule order_trans) apply ( rule ile_iSuc) apply ( drule iSuc_ile_mono [THEN iffD1]) apply ( assumption)