# HG changeset patch # User paulson # Date 1664298154 -3600 # Node ID 8655344f1cf664ba0ab83cbde6fa8fe1f26d0ef0 # Parent 9fc34f76b4e85939fe6c910790aaadde2f3a828c More obsolete "unfold" calls diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/AC15_WO6.thy --- a/src/ZF/AC/AC15_WO6.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/AC15_WO6.thy Tue Sep 27 18:02:34 2022 +0100 @@ -134,7 +134,7 @@ (* ********************************************************************** *) theorem AC12_AC15: "AC12 \ AC15" -apply (unfold AC12_def AC15_def) + unfolding AC12_def AC15_def apply (blast del: ballI intro!: cons_times_nat_not_Finite ex_fun_AC13_AC15) done @@ -168,7 +168,7 @@ done theorem AC15_WO6: "AC15 \ WO6" -apply (unfold AC15_def WO6_def) + unfolding AC15_def WO6_def apply (rule allI) apply (erule_tac x = "Pow (A) -{0}" in allE) apply (erule impE, fast) @@ -212,7 +212,7 @@ (* ********************************************************************** *) lemma AC1_AC13: "AC1 \ AC13(1)" -apply (unfold AC1_def AC13_def) + unfolding AC1_def AC13_def apply (rule allI) apply (erule allE) apply (rule impI) @@ -272,7 +272,7 @@ done theorem AC13_AC1: "AC13(1) \ AC1" -apply (unfold AC13_def AC1_def) + unfolding AC13_def AC1_def apply (fast elim!: AC13_AC1_lemma) done @@ -281,7 +281,7 @@ (* ********************************************************************** *) theorem AC11_AC14: "AC11 \ AC14" -apply (unfold AC11_def AC14_def) + unfolding AC11_def AC14_def apply (fast intro!: AC10_AC13) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/AC16_WO4.thy --- a/src/ZF/AC/AC16_WO4.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/AC16_WO4.thy Tue Sep 27 18:02:34 2022 +0100 @@ -87,7 +87,7 @@ done lemma succ_not_lepoll_imp_eqpoll: "\\A \ B; A \ B\ \ succ(A) \ B" -apply (unfold lepoll_def eqpoll_def bij_def surj_def) + unfolding lepoll_def eqpoll_def bij_def surj_def apply (fast elim!: succ_not_lepoll_lemma inj_is_fun) done @@ -254,7 +254,7 @@ lemma sI: "\w \ t_n; cons(b,cons(u,a)) \ w; a \ y; b \ y-a; l \ a\ \ w \ s(u)" -apply (unfold s_def succ_def k_def) + unfolding s_def succ_def k_def apply (blast intro!: eqpoll_imp_lepoll [THEN cons_lepoll_cong] intro: subset_imp_lepoll lepoll_trans) done @@ -394,7 +394,7 @@ lemma LL_subset: "LL \ {z \ Pow(y). z \ succ(k #+ m)}" -apply (unfold LL_def MM_def) + unfolding LL_def MM_def apply (insert "includes") apply (blast intro: subset_imp_lepoll eqpoll_imp_lepoll lepoll_trans) done @@ -563,7 +563,7 @@ theorem AC16_WO4: "\AC_Equiv.AC16(k #+ m, k); 0 < k; 0 < m; k \ nat; m \ nat\ \ WO4(m)" -apply (unfold AC_Equiv.AC16_def WO4_def) + unfolding AC_Equiv.AC16_def WO4_def apply (rule allI) apply (case_tac "Finite (A)") apply (rule lemma1, assumption+) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/AC16_lemmas.thy --- a/src/ZF/AC/AC16_lemmas.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/AC16_lemmas.thy Tue Sep 27 18:02:34 2022 +0100 @@ -46,7 +46,7 @@ done lemma eqpoll_RepFun_sing: "X\{{x}. x \ X}" -apply (unfold eqpoll_def bij_def) + unfolding eqpoll_def bij_def apply (rule_tac x = "\x \ X. {x}" in exI) apply (rule IntI) apply (unfold inj_def surj_def, simp) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/AC17_AC1.thy --- a/src/ZF/AC/AC17_AC1.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/AC17_AC1.thy Tue Sep 27 18:02:34 2022 +0100 @@ -19,7 +19,7 @@ by (fast intro!: lam_type apply_type) lemma AC0_AC1: "AC0 \ AC1" -apply (unfold AC0_def AC1_def) + unfolding AC0_def AC1_def apply (blast intro: AC0_AC1_lemma) done @@ -35,7 +35,7 @@ done lemma AC1_AC17: "AC1 \ AC17" -apply (unfold AC1_def AC17_def) + unfolding AC1_def AC17_def apply (rule allI) apply (rule ballI) apply (erule_tac x = "Pow (A) -{0}" in allE) @@ -152,7 +152,7 @@ by (unfold pairwise_disjoint_def, fast) lemma AC1_AC2: "AC1 \ AC2" -apply (unfold AC1_def AC2_def) + unfolding AC1_def AC2_def apply (rule allI) apply (rule impI) apply (elim asm_rl conjE allE exE impE, assumption) @@ -185,7 +185,7 @@ done lemma AC2_AC1: "AC2 \ AC1" -apply (unfold AC1_def AC2_def pairwise_disjoint_def) + unfolding AC1_def AC2_def pairwise_disjoint_def apply (intro allI impI) apply (elim allE impE) prefer 2 apply (fast elim!: AC2_AC1_aux3) @@ -201,7 +201,7 @@ by blast lemma AC1_AC4: "AC1 \ AC4" -apply (unfold AC1_def AC4_def) + unfolding AC1_def AC4_def apply (intro allI impI) apply (drule spec, drule mp [OF _ empty_notin_images]) apply (best intro!: lam_type elim!: apply_type) @@ -222,7 +222,7 @@ by fast lemma AC4_AC3: "AC4 \ AC3" -apply (unfold AC3_def AC4_def) + unfolding AC3_def AC4_def apply (intro allI ballI) apply (elim allE impE) apply (erule AC4_AC3_aux1) @@ -240,7 +240,7 @@ done lemma AC3_AC1: "AC3 \ AC1" -apply (unfold AC1_def AC3_def) + unfolding AC1_def AC3_def apply (fast intro!: id_type elim: AC3_AC1_lemma [THEN subst]) done @@ -249,7 +249,7 @@ (* ********************************************************************** *) lemma AC4_AC5: "AC4 \ AC5" -apply (unfold range_def AC4_def AC5_def) + unfolding range_def AC4_def AC5_def apply (intro allI ballI) apply (elim allE impE) apply (erule fun_is_rel [THEN converse_type]) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/AC7_AC9.thy --- a/src/ZF/AC/AC7_AC9.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/AC7_AC9.thy Tue Sep 27 18:02:34 2022 +0100 @@ -69,7 +69,7 @@ by (blast dest: Sigma_fun_space_not0) lemma AC7_AC6: "AC7 \ AC6" -apply (unfold AC6_def AC7_def) + unfolding AC6_def AC7_def apply (rule allI) apply (rule impI) apply (case_tac "A=0", simp) @@ -97,7 +97,7 @@ done lemma AC1_AC8: "AC1 \ AC8" -apply (unfold AC1_def AC8_def) + unfolding AC1_def AC8_def apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2) done @@ -114,7 +114,7 @@ by fast lemma AC8_AC9: "AC8 \ AC9" -apply (unfold AC8_def AC9_def) + unfolding AC8_def AC9_def apply (intro allI impI) apply (erule allE) apply (erule impE, erule AC8_AC9_lemma, force) @@ -159,7 +159,7 @@ done lemma AC9_AC1: "AC9 \ AC1" -apply (unfold AC1_def AC9_def) + unfolding AC1_def AC9_def apply (intro allI impI) apply (erule allE) apply (case_tac "A\0") diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/DC.thy --- a/src/ZF/AC/DC.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/DC.thy Tue Sep 27 18:02:34 2022 +0100 @@ -136,7 +136,7 @@ by (unfold RR_def, fast) lemma lemma1_2: "RR \ 0" -apply (unfold RR_def XX_def) + unfolding RR_def XX_def apply (rule all_ex [THEN ballE]) apply (erule_tac [2] notE [OF _ empty_subsetI [THEN PowI]]) apply (erule_tac impE [OF _ nat_0I [THEN n_lesspoll_nat]]) @@ -153,7 +153,7 @@ done lemma lemma1_3: "range(RR) \ domain(RR)" -apply (unfold RR_def XX_def) + unfolding RR_def XX_def apply (rule range_subset_domain, blast, clarify) apply (frule fun_is_rel [THEN image_subset, THEN PowI, THEN all_ex [THEN bspec]]) @@ -326,7 +326,7 @@ succ(\f \ Y. domain(f)) \ (\f\Y. restrict(g, domain(f)) = f)") apply (simp add: RR_def, blast) apply (safe del: domainE) -apply (unfold XX_def RR_def) + unfolding XX_def RR_def apply (rule rev_bexI, erule singleton_in_funs) apply (simp add: nat_0I [THEN rev_bexI] cons_fun_type2) done @@ -393,7 +393,7 @@ "\\b \ RR; f \ nat -> XX; range(R) \ domain(R); x \ domain(R)\ \ allRR" -apply (unfold RR_def allRR_def) + unfolding RR_def allRR_def apply (rule oallI, drule ltD) apply (erule nat_induct) apply (drule_tac x=0 in ospec, blast intro: Limit_has_0) @@ -463,7 +463,7 @@ theorem DC_nat_imp_DC0: "DC(nat) \ DC0" -apply (unfold DC_def DC0_def) + unfolding DC_def DC0_def apply (intro allI impI) apply (erule asm_rl conjE ex_in_domain [THEN exE] allE)+ apply (erule impE [OF _ imp_DC0.lemma4], assumption+) @@ -504,7 +504,7 @@ done theorem DC_WO3: "(\K. Card(K) \ DC(K)) \ WO3" -apply (unfold DC_def WO3_def) + unfolding DC_def WO3_def apply (rule allI) apply (case_tac "A \ Hartog (A)") apply (fast dest!: lesspoll_imp_ex_lt_eqpoll @@ -572,7 +572,7 @@ done theorem WO1_DC_Card: "WO1 \ \K. Card(K) \ DC(K)" -apply (unfold DC_def WO1_def) + unfolding DC_def WO1_def apply (rule allI impI)+ apply (erule allE exE conjE)+ apply (rule_tac x = "\b \ K. ff (b, X, Ra, R) " in bexI) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/HH.thy --- a/src/ZF/AC/HH.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/HH.thy Tue Sep 27 18:02:34 2022 +0100 @@ -99,7 +99,7 @@ lemma HH_subset_x_imp_lepoll: "\HH(f, x, i) \ Pow(x)-{0}; Ord(i)\ \ i \ Pow(x)-{0}" -apply (unfold lepoll_def inj_def) + unfolding lepoll_def inj_def apply (rule_tac x = "\j \ i. HH (f, x, j) " in exI) apply (simp (no_asm_simp)) apply (fast del: DiffE @@ -235,7 +235,7 @@ done lemma AC1_WO2: "AC1 \ WO2" -apply (unfold AC1_def WO2_def eqpoll_def) + unfolding AC1_def WO2_def eqpoll_def apply (intro allI) apply (drule_tac x = "Pow(A) - {0}" in spec) apply (blast dest: bijection) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/WO1_AC.thy --- a/src/ZF/AC/WO1_AC.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/WO1_AC.thy Tue Sep 27 18:02:34 2022 +0100 @@ -83,7 +83,7 @@ lemma lemma2_5: "f \ bij(D+D, B) \ \({{f`Inl(i), f`Inr(i)}. i \ D})=B" -apply (unfold bij_def surj_def) + unfolding bij_def surj_def apply (fast elim!: inj_is_fun [THEN apply_type]) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/WO1_WO7.thy --- a/src/ZF/AC/WO1_WO7.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/WO1_WO7.thy Tue Sep 27 18:02:34 2022 +0100 @@ -21,7 +21,7 @@ (* ********************************************************************** *) lemma WO7_iff_LEMMA: "WO7 \ LEMMA" -apply (unfold WO7_def LEMMA_def) + unfolding WO7_def LEMMA_def apply (blast intro: Finite_well_ord_converse) done @@ -30,7 +30,7 @@ (* ********************************************************************** *) lemma LEMMA_imp_WO1: "LEMMA \ WO1" -apply (unfold WO1_def LEMMA_def Finite_def eqpoll_def) + unfolding WO1_def LEMMA_def Finite_def eqpoll_def apply (blast intro!: well_ord_rvimage [OF bij_is_inj nat_implies_well_ord]) done @@ -49,7 +49,7 @@ lemma converse_Memrel_not_wf_on: "\Ord(a); \Finite(a)\ \ \wf[a](converse(Memrel(a)))" -apply (unfold wf_on_def wf_def) + unfolding wf_on_def wf_def apply (drule nat_le_infinite_Ord [THEN le_imp_subset], assumption) apply (rule notI) apply (erule_tac x = nat in allE, blast) @@ -102,7 +102,7 @@ (* The implication "WO8 \ WO1": a faithful image of Rubin \ Rubin's proof*) lemma WO8_WO1: "WO8 \ WO1" -apply (unfold WO1_def WO8_def) + unfolding WO1_def WO8_def apply (rule allI) apply (erule_tac x = "{{x}. x \ A}" in allE) apply (erule impE) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/WO2_AC16.thy --- a/src/ZF/AC/WO2_AC16.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/WO2_AC16.thy Tue Sep 27 18:02:34 2022 +0100 @@ -394,7 +394,7 @@ \ b=y" apply (drule subset_imp_eq) apply (erule_tac [3] nat_succI) -apply (unfold bij_def inj_def) + unfolding bij_def inj_def apply (blast intro: eqpoll_sym eqpoll_imp_lepoll dest: ltD apply_type)+ done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/AC/WO6_WO1.thy --- a/src/ZF/AC/WO6_WO1.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/AC/WO6_WO1.thy Tue Sep 27 18:02:34 2022 +0100 @@ -66,7 +66,7 @@ (* ********************************************************************** *) lemma WO3_WO1: "WO3 \ WO1" -apply (unfold eqpoll_def WO1_def WO3_def) + unfolding eqpoll_def WO1_def WO3_def apply (intro allI) apply (drule_tac x=A in spec) apply (blast intro: bij_is_inj well_ord_rvimage @@ -76,7 +76,7 @@ (* ********************************************************************** *) lemma WO1_WO2: "WO1 \ WO2" -apply (unfold eqpoll_def WO1_def WO2_def) + unfolding eqpoll_def WO1_def WO2_def apply (blast intro!: Ord_ordertype ordermap_bij) done @@ -94,7 +94,7 @@ by (fast dest!: surj_imp_eq' intro!: ltI elim!: ltE) lemma WO1_WO4: "WO1 \ WO4(1)" -apply (unfold WO1_def WO4_def) + unfolding WO1_def WO4_def apply (rule allI) apply (erule_tac x = A in allE) apply (erule exE) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Bin.thy --- a/src/ZF/Bin.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Bin.thy Tue Sep 27 18:02:34 2022 +0100 @@ -402,7 +402,7 @@ "\v \ bin; w \ bin\ \ integ_of(v) $< integ_of(w) \ znegative (integ_of (bin_add (v, bin_minus(w))))" -apply (unfold zless_def zdiff_def) + unfolding zless_def zdiff_def apply (simp add: integ_of_minus integ_of_add) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Cardinal.thy --- a/src/ZF/Cardinal.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Cardinal.thy Tue Sep 27 18:02:34 2022 +0100 @@ -125,7 +125,7 @@ (*Asymmetry law*) lemma eqpollI: "\X \ Y; Y \ X\ \ X \ Y" -apply (unfold lepoll_def eqpoll_def) + unfolding lepoll_def eqpoll_def apply (elim exE) apply (rule schroeder_bernstein, assumption+) done @@ -138,7 +138,7 @@ by (blast intro: eqpollI elim!: eqpollE) lemma lepoll_0_is_0: "A \ 0 \ A = 0" -apply (unfold lepoll_def inj_def) + unfolding lepoll_def inj_def apply (blast dest: apply_type) done @@ -332,7 +332,7 @@ (*Need AC to get @{term"X \ Y \ |X| \ |Y|"}; see well_ord_lepoll_imp_cardinal_le Converse also requires AC, but see well_ord_cardinal_eqE*) lemma cardinal_cong: "X \ Y \ |X| = |Y|" -apply (unfold eqpoll_def cardinal_def) + unfolding eqpoll_def cardinal_def apply (rule Least_cong) apply (blast intro: comp_bij bij_converse_bij) done @@ -380,13 +380,13 @@ (* Could replace the @{term"\(j \ i)"} by @{term"\(i \ j)"}. *) lemma CardI: "\Ord(i); \j. j \(j \ i)\ \ Card(i)" -apply (unfold Card_def cardinal_def) + unfolding Card_def cardinal_def apply (subst Least_equality) apply (blast intro: eqpoll_refl)+ done lemma Card_is_Ord: "Card(i) \ Ord(i)" -apply (unfold Card_def cardinal_def) + unfolding Card_def cardinal_def apply (erule ssubst) apply (rule Ord_Least) done @@ -621,7 +621,7 @@ lemma nat_lepoll_imp_ex_eqpoll_n: "\n \ nat; nat \ X\ \ \Y. Y \ X \ n \ Y" -apply (unfold lepoll_def eqpoll_def) + unfolding lepoll_def eqpoll_def apply (fast del: subsetI subsetCE intro!: subset_SIs dest!: Ord_nat [THEN [2] OrdmemD, THEN [2] restrict_inj] @@ -650,7 +650,7 @@ lemma lesspoll_succ_imp_lepoll: "\A \ succ(m); m \ nat\ \ A \ m" -apply (unfold lesspoll_def lepoll_def eqpoll_def bij_def) + unfolding lesspoll_def lepoll_def eqpoll_def bij_def apply (auto dest: inj_not_surj_succ) done @@ -951,7 +951,7 @@ lemma Finite_imp_well_ord: "Finite(A) \ \r. well_ord(A,r)" -apply (unfold Finite_def eqpoll_def) + unfolding Finite_def eqpoll_def apply (blast intro: well_ord_rvimage bij_is_inj well_ord_Memrel nat_into_Ord) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/CardinalArith.thy --- a/src/ZF/CardinalArith.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/CardinalArith.thy Tue Sep 27 18:02:34 2022 +0100 @@ -293,14 +293,14 @@ done lemma cmult_1 [simp]: "Card(K) \ 1 \ K = K" -apply (unfold cmult_def succ_def) + unfolding cmult_def succ_def apply (simp add: prod_singleton_eqpoll [THEN cardinal_cong] Card_cardinal_eq) done subsection\Some inequalities for multiplication\ lemma prod_square_lepoll: "A \ A*A" -apply (unfold lepoll_def inj_def) + unfolding lepoll_def inj_def apply (rule_tac x = "\x\A. \x,x\" in exI, simp) done @@ -317,7 +317,7 @@ subsubsection\Multiplication by a non-zero cardinal\ lemma prod_lepoll_self: "b \ B \ A \ A*B" -apply (unfold lepoll_def inj_def) + unfolding lepoll_def inj_def apply (rule_tac x = "\x\A. \x,b\" in exI, simp) done @@ -366,7 +366,7 @@ (*Unconditional version requires AC*) lemma cmult_succ_lemma: "\Ord(m); Ord(n)\ \ succ(m) \ n = n \ (m \ n)" -apply (unfold cmult_def cadd_def) + unfolding cmult_def cadd_def apply (rule prod_succ_eqpoll [THEN cardinal_cong, THEN trans]) apply (rule cardinal_cong [symmetric]) apply (rule sum_eqpoll_cong [OF eqpoll_refl well_ord_cardinal_eqpoll]) @@ -502,7 +502,7 @@ lemma pred_csquare_subset: "z Order.pred(K*K, \z,z\, csquare_rel(K)) \ succ(z)*succ(z)" -apply (unfold Order.pred_def) + unfolding Order.pred_def apply (safe del: SigmaI dest!: csquareD) apply (unfold lt_def, auto) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Coind/ECR.thy --- a/src/ZF/Coind/ECR.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Coind/ECR.thy Tue Sep 27 18:02:34 2022 +0100 @@ -61,7 +61,7 @@ lemma basic_consistency_lem: "\ve \ ValEnv; te \ TyEnv; isofenv(ve,te)\ \ hastyenv(ve,te)" -apply (unfold isofenv_def hastyenv_def) + unfolding isofenv_def hastyenv_def apply (force intro: te_appI ve_domI) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Coind/Map.thy --- a/src/ZF/Coind/Map.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Coind/Map.thy Tue Sep 27 18:02:34 2022 +0100 @@ -81,7 +81,7 @@ lemma mapQU: "\m \ PMap(A,quniv(B)); \x. x \ A \ x \ univ(B)\ \ m \ quniv(B)" -apply (unfold PMap_def TMap_def) + unfolding PMap_def TMap_def apply (blast intro!: MapQU_lemma [THEN subsetD]) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Coind/Values.thy --- a/src/ZF/Coind/Values.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Coind/Values.thy Tue Sep 27 18:02:34 2022 +0100 @@ -67,7 +67,7 @@ lemma v_constNE [simp]: "c \ Const \ v_const(c) \ 0" -apply (unfold QPair_def QInl_def QInr_def Val_ValEnv.con_defs) + unfolding QPair_def QInl_def QInr_def Val_ValEnv.con_defs apply (drule constNEE, auto) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Constructible/L_axioms.thy --- a/src/ZF/Constructible/L_axioms.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Constructible/L_axioms.thy Tue Sep 27 18:02:34 2022 +0100 @@ -205,7 +205,7 @@ theorem Ex_reflection: "REFLECTS[\x. P(fst(x),snd(x)), \a x. Q(a,fst(x),snd(x))] \ REFLECTS[\x. \z. L(z) \ P(x,z), \a x. \z\Lset(a). Q(a,x,z)]" -apply (unfold L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def) + unfolding L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def apply (elim meta_exE) apply (rule meta_exI) apply (erule reflection.Ex_reflection [OF reflection_Lset]) @@ -214,7 +214,7 @@ theorem All_reflection: "REFLECTS[\x. P(fst(x),snd(x)), \a x. Q(a,fst(x),snd(x))] \ REFLECTS[\x. \z. L(z) \ P(x,z), \a x. \z\Lset(a). Q(a,x,z)]" -apply (unfold L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def) + unfolding L_Reflects_def L_ClEx_def L_FF_def L_F0_def L_def apply (elim meta_exE) apply (rule meta_exI) apply (erule reflection.All_reflection [OF reflection_Lset]) @@ -239,7 +239,7 @@ theorem Rex_reflection': "REFLECTS[\x. P(fst(x),snd(x)), \a x. Q(a,fst(x),snd(x))] \ REFLECTS[\x. \z[L]. P(x,z), \a x. \z[##Lset(a)]. Q(a,x,z)]" -apply (unfold setclass_def rex_def) + unfolding setclass_def rex_def apply (erule Rex_reflection [unfolded rex_def Bex_def]) done @@ -247,7 +247,7 @@ theorem Rall_reflection': "REFLECTS[\x. P(fst(x),snd(x)), \a x. Q(a,fst(x),snd(x))] \ REFLECTS[\x. \z[L]. P(x,z), \a x. \z[##Lset(a)]. Q(a,x,z)]" -apply (unfold setclass_def rall_def) + unfolding setclass_def rall_def apply (erule Rall_reflection [unfolded rall_def Ball_def]) done @@ -259,7 +259,7 @@ lemma ReflectsD: "\REFLECTS[P,Q]; Ord(i)\ \ \j. i (\x \ Lset(j). P(x) \ Q(j,x))" -apply (unfold L_Reflects_def Closed_Unbounded_def) + unfolding L_Reflects_def Closed_Unbounded_def apply (elim meta_exE, clarify) apply (blast dest!: UnboundedD) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Constructible/Rank.thy --- a/src/ZF/Constructible/Rank.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Constructible/Rank.thy Tue Sep 27 18:02:34 2022 +0100 @@ -39,7 +39,7 @@ lemma (in M_ordertype) wellordered_iso_subset_lemma: "\wellordered(M,A,r); f \ ord_iso(A,r, A',r); A'<= A; y \ A; M(A); M(f); M(r)\ \ \ \ r" -apply (unfold wellordered_def ord_iso_def) + unfolding wellordered_def ord_iso_def apply (elim conjE CollectE) apply (erule wellfounded_on_induct, assumption+) apply (insert well_ord_iso_separation [of A f r]) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Constructible/Reflection.thy --- a/src/ZF/Constructible/Reflection.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Constructible/Reflection.thy Tue Sep 27 18:02:34 2022 +0100 @@ -187,7 +187,7 @@ "\y\Mset(a); Cl(a); ClEx(P,a); \a. \Cl(a); Ord(a)\ \ \x\Mset(a). P(x) \ Q(a,x)\ \ (\z. M(z) \ P(\y,z\)) \ (\z\Mset(a). Q(a,\y,z\))" -apply (unfold ClEx_def FF_def F0_def M_def) + unfolding ClEx_def FF_def F0_def M_def apply (rule ex_reflection.ZF_ClEx_iff [OF ex_reflection.intro, OF reflection.intro ex_reflection_axioms.intro, of Mset Cl]) @@ -204,7 +204,7 @@ lemma Closed_Unbounded_ClEx: "(\a. \Cl(a); Ord(a)\ \ \x\Mset(a). P(x) \ Q(a,x)) \ Closed_Unbounded(ClEx(P))" -apply (unfold ClEx_eq FF_def F0_def M_def) + unfolding ClEx_eq FF_def F0_def M_def apply (rule ex_reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl]) apply (rule ex_reflection.intro, rule reflection_axioms) apply (blast intro: ex_reflection_axioms.intro) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Constructible/Relative.thy --- a/src/ZF/Constructible/Relative.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Constructible/Relative.thy Tue Sep 27 18:02:34 2022 +0100 @@ -945,7 +945,7 @@ lemma (in M_trivial) limit_ordinal_abs [simp]: "M(a) \ limit_ordinal(M,a) \ Limit(a)" -apply (unfold Limit_def limit_ordinal_def) + unfolding Limit_def limit_ordinal_def apply (simp add: Ord_0_lt_iff) apply (simp add: lt_def, blast) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Constructible/Satisfies_absolute.thy --- a/src/ZF/Constructible/Satisfies_absolute.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Constructible/Satisfies_absolute.thy Tue Sep 27 18:02:34 2022 +0100 @@ -890,7 +890,7 @@ fun_apply(##Lset(i), rp, u, rpe) \ fun_apply(##Lset(i), rq, u, rqe) \ is_and(##Lset(i), rpe, rqe, andpq) \ is_not(##Lset(i), andpq, notpq) \ u \ list(A) \ pair(##Lset(i), u, notpq, x))]" -apply (unfold is_and_def is_not_def) + unfolding is_and_def is_not_def apply (intro FOL_reflections function_reflections) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Epsilon.thy --- a/src/ZF/Epsilon.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Epsilon.thy Tue Sep 27 18:02:34 2022 +0100 @@ -48,7 +48,7 @@ lemmas arg_into_eclose = arg_subset_eclose [THEN subsetD] lemma Transset_eclose: "Transset(eclose(A))" -apply (unfold eclose_def Transset_def) + unfolding eclose_def Transset_def apply (rule subsetI [THEN ballI]) apply (erule UN_E) apply (rule nat_succI [THEN UN_I], assumption) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/EquivClass.thy --- a/src/ZF/EquivClass.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/EquivClass.thy Tue Sep 27 18:02:34 2022 +0100 @@ -52,7 +52,7 @@ (*second half*) lemma comp_equivI: "\converse(r) O r = r; domain(r) = A\ \ equiv(A,r)" -apply (unfold equiv_def refl_def sym_def trans_def) + unfolding equiv_def refl_def sym_def trans_def apply (erule equalityE) apply (subgoal_tac "\x y. \x,y\ \ r \ \y,x\ \ r", blast+) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Finite.thy --- a/src/ZF/Finite.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Finite.thy Tue Sep 27 18:02:34 2022 +0100 @@ -41,7 +41,7 @@ subsection \Finite Powerset Operator\ lemma Fin_mono: "A<=B \ Fin(A) \ Fin(B)" -apply (unfold Fin.defs) + unfolding Fin.defs apply (rule lfp_mono) apply (rule Fin.bnd_mono)+ apply blast @@ -130,7 +130,7 @@ lemma FiniteFun_mono: "\A<=C; B<=D\ \ A -||> B \ C -||> D" -apply (unfold FiniteFun.defs) + unfolding FiniteFun.defs apply (rule lfp_mono) apply (rule FiniteFun.bnd_mono)+ apply (intro Fin_mono Sigma_mono basic_monos, assumption+) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/Binary_Trees.thy --- a/src/ZF/Induct/Binary_Trees.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/Binary_Trees.thy Tue Sep 27 18:02:34 2022 +0100 @@ -33,14 +33,14 @@ \ lemma bt_mono: "A \ B \ bt(A) \ bt(B)" - apply (unfold bt.defs) + unfolding bt.defs apply (rule lfp_mono) apply (rule bt.bnd_mono)+ apply (rule univ_mono basic_monos | assumption)+ done lemma bt_univ: "bt(univ(A)) \ univ(A)" - apply (unfold bt.defs bt.con_defs) + unfolding bt.defs bt.con_defs apply (rule lfp_lowerbound) apply (rule_tac [2] A_subset_univ [THEN univ_mono]) apply (fast intro!: zero_in_univ Inl_in_univ Inr_in_univ Pair_in_univ) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/Datatypes.thy --- a/src/ZF/Induct/Datatypes.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/Datatypes.thy Tue Sep 27 18:02:34 2022 +0100 @@ -32,14 +32,14 @@ \ lemma data_mono: "\A \ C; B \ D\ \ data(A, B) \ data(C, D)" - apply (unfold data.defs) + unfolding data.defs apply (rule lfp_mono) apply (rule data.bnd_mono)+ apply (rule univ_mono Un_mono basic_monos | assumption)+ done lemma data_univ: "data(univ(A), univ(A)) \ univ(A)" - apply (unfold data.defs data.con_defs) + unfolding data.defs data.con_defs apply (rule lfp_lowerbound) apply (rule_tac [2] subset_trans [OF A_subset_univ Un_upper1, THEN univ_mono]) apply (fast intro!: zero_in_univ Inl_in_univ Inr_in_univ Pair_in_univ) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/ListN.thy --- a/src/ZF/Induct/ListN.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/ListN.thy Tue Sep 27 18:02:34 2022 +0100 @@ -37,7 +37,7 @@ done lemma listn_mono: "A \ B \ listn(A) \ listn(B)" - apply (unfold listn.defs) + unfolding listn.defs apply (rule lfp_mono) apply (rule listn.bnd_mono)+ apply (assumption | rule univ_mono Sigma_mono list_mono basic_monos)+ diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/Multiset.thy --- a/src/ZF/Induct/Multiset.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/Multiset.thy Tue Sep 27 18:02:34 2022 +0100 @@ -268,12 +268,12 @@ by (auto intro!: lam_cong simp add: munion_def) lemma munion_assoc: "(M +# N) +# K = M +# (N +# K)" -apply (unfold munion_def mset_of_def) + unfolding munion_def mset_of_def apply (rule lam_cong, auto) done lemma munion_lcommute: "M +# (N +# K) = N +# (M +# K)" -apply (unfold munion_def mset_of_def) + unfolding munion_def mset_of_def apply (rule lam_cong, auto) done @@ -291,7 +291,7 @@ by (auto simp add: multiset_def mdiff_def normalize_def multiset_fun_iff mset_of_def funrestrict_def) lemma mdiff_union_inverse2 [simp]: "multiset(M) \ M +# {#a#} -# {#a#} = M" -apply (unfold multiset_def munion_def mdiff_def msingle_def normalize_def mset_of_def) + unfolding multiset_def munion_def mdiff_def msingle_def normalize_def mset_of_def apply (auto cong add: if_cong simp add: ltD multiset_fun_iff funrestrict_def subset_Un_iff2 [THEN iffD1]) prefer 2 apply (force intro!: lam_type) apply (subgoal_tac [2] "{x \ A \ {a} . x \ a \ x \ A} = A") @@ -483,7 +483,7 @@ unfolding multiset_def apply (erule Finite_induct) apply (auto simp add: multiset_fun_iff) -apply (unfold mset_of_def mcount_def) + unfolding mset_of_def mcount_def apply (case_tac "x \ A", auto) apply (subgoal_tac "$# M ` x $+ #-1 = $# M ` x $- $# 1") apply (erule ssubst) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/Ntree.thy --- a/src/ZF/Induct/Ntree.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/Ntree.thy Tue Sep 27 18:02:34 2022 +0100 @@ -85,7 +85,7 @@ \ lemma ntree_mono: "A \ B \ ntree(A) \ ntree(B)" - apply (unfold ntree.defs) + unfolding ntree.defs apply (rule lfp_mono) apply (rule ntree.bnd_mono)+ apply (assumption | rule univ_mono basic_monos)+ @@ -93,7 +93,7 @@ lemma ntree_univ: "ntree(univ(A)) \ univ(A)" \ \Easily provable by induction also\ - apply (unfold ntree.defs ntree.con_defs) + unfolding ntree.defs ntree.con_defs apply (rule lfp_lowerbound) apply (rule_tac [2] A_subset_univ [THEN univ_mono]) apply (blast intro: Pair_in_univ nat_fun_univ [THEN subsetD]) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/PropLog.thy --- a/src/ZF/Induct/PropLog.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/PropLog.thy Tue Sep 27 18:02:34 2022 +0100 @@ -107,7 +107,7 @@ subsection \Proof theory of propositional logic\ lemma thms_mono: "G \ H \ thms(G) \ thms(H)" - apply (unfold thms.defs) + unfolding thms.defs apply (rule lfp_mono) apply (rule thms.bnd_mono)+ apply (assumption | rule univ_mono basic_monos)+ diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/Rmap.thy --- a/src/ZF/Induct/Rmap.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/Rmap.thy Tue Sep 27 18:02:34 2022 +0100 @@ -21,7 +21,7 @@ type_intros domainI rangeI list.intros lemma rmap_mono: "r \ s \ rmap(r) \ rmap(s)" - apply (unfold rmap.defs) + unfolding rmap.defs apply (rule lfp_mono) apply (rule rmap.bnd_mono)+ apply (assumption | rule Sigma_mono list_mono domain_mono range_mono basic_monos)+ diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/Term.thy --- a/src/ZF/Induct/Term.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/Term.thy Tue Sep 27 18:02:34 2022 +0100 @@ -77,7 +77,7 @@ \ lemma term_mono: "A \ B \ term(A) \ term(B)" - apply (unfold term.defs) + unfolding term.defs apply (rule lfp_mono) apply (rule term.bnd_mono)+ apply (rule univ_mono basic_monos| assumption)+ @@ -85,7 +85,7 @@ lemma term_univ: "term(univ(A)) \ univ(A)" \ \Easily provable by induction also\ - apply (unfold term.defs term.con_defs) + unfolding term.defs term.con_defs apply (rule lfp_lowerbound) apply (rule_tac [2] A_subset_univ [THEN univ_mono]) apply safe @@ -120,7 +120,7 @@ term_rec(Apply(a,ts), d) = d(a, ts, map (\z. term_rec(z,d), ts))" \ \Typing premise is necessary to invoke \map_lemma\.\ apply (rule term_rec_def [THEN def_Vrec, THEN trans]) - apply (unfold term.con_defs) + unfolding term.con_defs apply (simp add: rank_pair2 map_lemma) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Induct/Tree_Forest.thy --- a/src/ZF/Induct/Tree_Forest.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Induct/Tree_Forest.thy Tue Sep 27 18:02:34 2022 +0100 @@ -39,7 +39,7 @@ \ lemma tree_subset_TF: "tree(A) \ tree_forest(A)" - apply (unfold tree_forest.defs) + unfolding tree_forest.defs apply (rule Part_subset) done @@ -47,7 +47,7 @@ by (rule tree_subset_TF [THEN subsetD]) lemma forest_subset_TF: "forest(A) \ tree_forest(A)" - apply (unfold tree_forest.defs) + unfolding tree_forest.defs apply (rule Part_subset) done @@ -63,7 +63,7 @@ "tree_forest(A) = (A \ forest(A)) + ({0} + tree(A) \ forest(A))" \ \NOT useful, but interesting \dots\ supply rews = tree_forest.con_defs tree_def forest_def - apply (unfold tree_def forest_def) + unfolding tree_def forest_def apply (fast intro!: tree_forest.intros [unfolded rews, THEN PartD1] elim: tree_forest.cases [unfolded rews]) done @@ -75,13 +75,13 @@ by (rule tree_forest_unfold [unfolded tree_def forest_def]) lemma tree_unfold: "tree(A) = {Inl(x). x \ A \ forest(A)}" - apply (unfold tree_def forest_def) + unfolding tree_def forest_def apply (rule Part_Inl [THEN subst]) apply (rule tree_forest_unfold' [THEN subst_context]) done lemma forest_unfold: "forest(A) = {Inr(x). x \ {0} + tree(A)*forest(A)}" - apply (unfold tree_def forest_def) + unfolding tree_def forest_def apply (rule Part_Inr [THEN subst]) apply (rule tree_forest_unfold' [THEN subst_context]) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/List.thy --- a/src/ZF/List.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/List.thy Tue Sep 27 18:02:34 2022 +0100 @@ -154,7 +154,7 @@ (** Lemmas to justify using "list" in other recursive type definitions **) lemma list_mono: "A<=B \ list(A) \ list(B)" -apply (unfold list.defs ) + unfolding list.defs apply (rule lfp_mono) apply (simp_all add: list.bnd_mono) apply (assumption | rule univ_mono basic_monos)+ @@ -162,7 +162,7 @@ (*There is a similar proof by list induction.*) lemma list_univ: "list(univ(A)) \ univ(A)" -apply (unfold list.defs list.con_defs) + unfolding list.defs list.con_defs apply (rule lfp_lowerbound) apply (rule_tac [2] A_subset_univ [THEN univ_mono]) apply (blast intro!: zero_in_univ Inl_in_univ Inr_in_univ Pair_in_univ) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Order.thy --- a/src/ZF/Order.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Order.thy Tue Sep 27 18:02:34 2022 +0100 @@ -362,7 +362,7 @@ lemma well_ord_ord_iso: "\well_ord(B,s); f \ ord_iso(A,r,B,s)\ \ well_ord(A,r)" -apply (unfold well_ord_def tot_ord_def) + unfolding well_ord_def tot_ord_def apply (fast elim!: part_ord_ord_iso linear_ord_iso wf_on_ord_iso) done @@ -409,7 +409,7 @@ (*Does not assume r is a wellordering!*) lemma ord_iso_image_pred: "\f \ ord_iso(A,r,B,s); a \ A\ \ f `` pred(A,a,r) = pred(B, f`a, s)" -apply (unfold ord_iso_def pred_def) + unfolding ord_iso_def pred_def apply (erule CollectE) apply (simp (no_asm_simp) add: image_fun [OF bij_is_fun Collect_subset]) apply (rule equalityI) @@ -500,7 +500,7 @@ lemma function_ord_iso_map: "well_ord(B,s) \ function(ord_iso_map(A,r,B,s))" -apply (unfold ord_iso_map_def function_def) + unfolding ord_iso_map_def function_def apply (blast intro: well_ord_iso_pred_eq ord_iso_sym ord_iso_trans) done @@ -567,7 +567,7 @@ \ domain(ord_iso_map(A,r,B,s)) = A | (\x\A. domain(ord_iso_map(A,r,B,s)) = pred(A,x,r))" apply (frule well_ord_is_wf) -apply (unfold wf_on_def wf_def) + unfolding wf_on_def wf_def apply (drule_tac x = "A-domain (ord_iso_map (A,r,B,s))" in spec) apply safe (*The first case: the domain equals A*) @@ -642,7 +642,7 @@ lemma well_ord_imp_ex1_first: "\well_ord(A,r); B<=A; B\0\ \ (\!b. first(b,B,r))" -apply (unfold well_ord_def wf_on_def wf_def first_def) + unfolding well_ord_def wf_on_def wf_def first_def apply (elim conjE allE disjE, blast) apply (erule bexE) apply (rule_tac a = x in ex1I, auto) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/OrderArith.thy --- a/src/ZF/OrderArith.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/OrderArith.thy Tue Sep 27 18:02:34 2022 +0100 @@ -325,13 +325,13 @@ lemma irrefl_rvimage: "\f \ inj(A,B); irrefl(B,r)\ \ irrefl(A, rvimage(A,f,r))" -apply (unfold irrefl_def rvimage_def) + unfolding irrefl_def rvimage_def apply (blast intro: inj_is_fun [THEN apply_type]) done lemma trans_on_rvimage: "\f \ inj(A,B); trans[B](r)\ \ trans[A](rvimage(A,f,r))" -apply (unfold trans_on_def rvimage_def) + unfolding trans_on_def rvimage_def apply (blast intro: inj_is_fun [THEN apply_type]) done @@ -384,7 +384,7 @@ lemma well_ord_rvimage: "\f \ inj(A,B); well_ord(B,r)\ \ well_ord(A, rvimage(A,f,r))" apply (rule well_ordI) -apply (unfold well_ord_def tot_ord_def) + unfolding well_ord_def tot_ord_def apply (blast intro!: wf_on_rvimage inj_is_fun) apply (blast intro!: linear_rvimage) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/OrderType.thy --- a/src/ZF/OrderType.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/OrderType.thy Tue Sep 27 18:02:34 2022 +0100 @@ -99,7 +99,7 @@ lemma ordermap_type: "ordermap(A,r) \ A -> ordertype(A,r)" -apply (unfold ordermap_def ordertype_def) + unfolding ordermap_def ordertype_def apply (rule lam_type) apply (rule lamI [THEN imageI], assumption+) done @@ -110,7 +110,7 @@ lemma ordermap_eq_image: "\wf[A](r); x \ A\ \ ordermap(A,r) ` x = ordermap(A,r) `` pred(A,x,r)" -apply (unfold ordermap_def pred_def) + unfolding ordermap_def pred_def apply (simp (no_asm_simp)) apply (erule wfrec_on [THEN trans], assumption) apply (simp (no_asm_simp) add: subset_iff image_lam vimage_singleton_iff) @@ -149,7 +149,7 @@ apply (rule_tac a=x in wf_on_induct, assumption+) apply (simp (no_asm_simp) add: ordermap_pred_unfold) apply (rule OrdI [OF _ Ord_is_Transset]) -apply (unfold pred_def Transset_def) + unfolding pred_def Transset_def apply (blast intro: trans_onD dest!: ordermap_unfold [THEN equalityD1])+ done @@ -160,7 +160,7 @@ apply (subst image_fun [OF ordermap_type subset_refl]) apply (rule OrdI [OF _ Ord_is_Transset]) prefer 2 apply (blast intro: Ord_ordermap) -apply (unfold Transset_def well_ord_def) + unfolding Transset_def well_ord_def apply (blast intro: trans_onD dest!: ordermap_unfold [THEN equalityD1]) done @@ -190,7 +190,7 @@ lemma ordermap_bij: "well_ord(A,r) \ ordermap(A,r) \ bij(A, ordertype(A,r))" -apply (unfold well_ord_def tot_ord_def bij_def inj_def) + unfolding well_ord_def tot_ord_def bij_def inj_def apply (force intro!: ordermap_type ordermap_surj elim: linearE dest: ordermap_mono simp add: mem_not_refl) @@ -381,7 +381,7 @@ "b \ B \ id(A+pred(B,b,s)) \ bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))" -apply (unfold pred_def id_def) + unfolding pred_def id_def apply (rule_tac d = "\z. z" in lam_bijective, auto) done @@ -780,7 +780,7 @@ \ ordertype(pred(i*j, , rmult(i,Memrel(i),j,Memrel(j))), rmult(i,Memrel(i),j,Memrel(j))) = raw_oadd (j**i', j')" -apply (unfold raw_oadd_def omult_def) + unfolding raw_oadd_def omult_def apply (simp add: ordertype_pred_Pair_eq lt_pred_Memrel ltD lt_Ord2 well_ord_Memrel) apply (rule trans) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Perm.thy --- a/src/ZF/Perm.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Perm.thy Tue Sep 27 18:02:34 2022 +0100 @@ -177,7 +177,7 @@ lemmas id_inj = subset_refl [THEN id_subset_inj] lemma id_surj: "id(A): surj(A,A)" -apply (unfold id_def surj_def) + unfolding id_def surj_def apply (simp (no_asm_simp)) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/QUniv.thy --- a/src/ZF/QUniv.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/QUniv.thy Tue Sep 27 18:02:34 2022 +0100 @@ -122,7 +122,7 @@ (*The opposite inclusion*) lemma quniv_QPair_D: " \ quniv(A) \ a: quniv(A) \ b: quniv(A)" -apply (unfold quniv_def QPair_def) + unfolding quniv_def QPair_def apply (rule Transset_includes_summands [THEN conjE]) apply (rule Transset_eclose [THEN Transset_univ]) apply (erule PowD, blast) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Resid/Confluence.thy --- a/src/ZF/Resid/Confluence.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Resid/Confluence.thy Tue Sep 27 18:02:34 2022 +0100 @@ -22,7 +22,7 @@ lemma strip_lemma_r: "\confluence(Spar_red1)\\ strip" -apply (unfold confluence_def strip_def) + unfolding confluence_def strip_def apply (rule impI [THEN allI, THEN allI]) apply (erule Spar_red.induct, fast) apply (fast intro: Spar_red.trans) @@ -31,7 +31,7 @@ lemma strip_lemma_l: "strip\ confluence(Spar_red)" -apply (unfold confluence_def strip_def) + unfolding confluence_def strip_def apply (rule impI [THEN allI, THEN allI]) apply (erule Spar_red.induct, blast) apply clarify diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Trancl.thy --- a/src/ZF/Trancl.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Trancl.thy Tue Sep 27 18:02:34 2022 +0100 @@ -196,7 +196,7 @@ (*Transitivity of r^+ is proved by transitivity of r^* *) lemma trans_trancl: "trans(r^+)" -apply (unfold trans_def trancl_def) + unfolding trans_def trancl_def apply (blast intro: rtrancl_into_rtrancl trans_rtrancl [THEN transD, THEN compI]) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/AllocBase.thy --- a/src/ZF/UNITY/AllocBase.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/AllocBase.thy Tue Sep 27 18:02:34 2022 +0100 @@ -268,7 +268,7 @@ lemma part_ord_Lt [simp]: "part_ord(nat, Lt)" -apply (unfold part_ord_def Lt_def irrefl_def trans_on_def) + unfolding part_ord_def Lt_def irrefl_def trans_on_def apply (auto intro: lt_trans) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/ClientImpl.thy --- a/src/ZF/UNITY/ClientImpl.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/ClientImpl.thy Tue Sep 27 18:02:34 2022 +0100 @@ -210,7 +210,7 @@ lemma strict_prefix_is_prefix: "\xs, ys\ \ strict_prefix(A) \ \xs, ys\ \ prefix(A) \ xs\ys" -apply (unfold strict_prefix_def id_def lam_def) + unfolding strict_prefix_def id_def lam_def apply (auto dest: prefix_type [THEN subsetD]) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/Comp.thy --- a/src/ZF/UNITY/Comp.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/Comp.thy Tue Sep 27 18:02:34 2022 +0100 @@ -144,7 +144,7 @@ (*** preserves ***) lemma preserves_is_safety_prop [simp]: "safety_prop(preserves(f))" -apply (unfold preserves_def safety_prop_def) + unfolding preserves_def safety_prop_def apply (auto dest: ActsD simp add: stable_def constrains_def) apply (drule_tac c = act in subsetD, auto) done @@ -157,7 +157,7 @@ lemma preserves_imp_eq: "\F \ preserves(f); act \ Acts(F); \s,t\ \ act\ \ f(s) = f(t)" -apply (unfold preserves_def stable_def constrains_def) + unfolding preserves_def stable_def constrains_def apply (subgoal_tac "s \ state \ t \ state") prefer 2 apply (blast dest!: Acts_type [THEN subsetD], force) done @@ -224,7 +224,7 @@ lemma preserves_imp_increasing: "\F \ preserves(f); \x \ state. f(x):A\ \ F \ Increasing.increasing(A, r, f)" -apply (unfold Increasing.increasing_def) + unfolding Increasing.increasing_def apply (auto intro: preserves_into_program) apply (rule_tac P = "\x. \k, x\:r" in preserves_imp_stable, auto) done @@ -324,7 +324,7 @@ \k \ A. F \ G \ Stable({s \ state. P(k, g(s))}); G \ preserves(f); \s \ state. f(s):A\ \ F \ G \ Stable({s \ state. P(f(s), g(s))})" -apply (unfold stable_def Stable_def preserves_def) + unfolding stable_def Stable_def preserves_def apply (rule_tac A = "(\k \ A. {s \ state. f(s)=k} \ {s \ state. P (f (s), g (s))})" in Constrains_weaken_L) prefer 2 apply blast apply (rule Constrains_UN_left, auto) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/Constrains.thy --- a/src/ZF/UNITY/Constrains.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/Constrains.thy Tue Sep 27 18:02:34 2022 +0100 @@ -103,7 +103,7 @@ (*The set of all reachable states is an invariant...*) lemma invariant_reachable: "F \ program \ F \ invariant(reachable(F))" -apply (unfold invariant_def initially_def) + unfolding invariant_def initially_def apply (blast intro: reachable_type [THEN subsetD] reachable.intros) done @@ -239,7 +239,7 @@ lemma stable_imp_Stable: "F \ stable(A) \ F \ Stable(A)" -apply (unfold stable_def Stable_def) + unfolding stable_def Stable_def apply (erule constrains_imp_Constrains) done @@ -340,7 +340,7 @@ lemma AlwaysI: "\Init(F)<=A; F \ Stable(A)\ \ F \ Always(A)" -apply (unfold Always_def initially_def) + unfolding Always_def initially_def apply (frule Stable_type [THEN subsetD], auto) done @@ -360,7 +360,7 @@ lemma invariant_imp_Always: "F \ invariant(A) \ F \ Always(A)" -apply (unfold Always_def invariant_def Stable_def stable_def) + unfolding Always_def invariant_def Stable_def stable_def apply (blast intro: constrains_imp_Constrains) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/FP.thy --- a/src/ZF/UNITY/FP.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/FP.thy Tue Sep 27 18:02:34 2022 +0100 @@ -51,7 +51,7 @@ apply (subgoal_tac "FP (F) \ B = (\x\B. FP (F) \ {x}) ") prefer 2 apply blast apply (simp (no_asm_simp) add: Int_cons_right) -apply (unfold FP_def stable_def) + unfolding FP_def stable_def apply (rule constrains_UN) apply (auto simp add: cons_absorb) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/Follows.thy --- a/src/ZF/UNITY/Follows.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/Follows.thy Tue Sep 27 18:02:34 2022 +0100 @@ -53,7 +53,7 @@ lemma subset_Always_comp: "\mono1(A, r, B, s, h); \x \ state. f(x):A \ g(x):A\ \ Always({x \ state. \ r})<=Always({x \ state. <(h comp f)(x), (h comp g)(x)> \ s})" -apply (unfold mono1_def metacomp_def) + unfolding mono1_def metacomp_def apply (auto simp add: Always_eq_includes_reachable) done @@ -110,7 +110,7 @@ mono2(A, r, B, s, C, t, h); refl(A, r); refl(B, s); trans[C](t); \x \ state. f1(x):A \ f(x):A \ g(x):B; k \ C\ \ F:{x \ state. \ t} \w {x \ state. \ t}" -apply (unfold mono2_def Increasing_def) + unfolding mono2_def Increasing_def apply (rule single_LeadsTo_I, auto) apply (drule_tac x = "g (sa) " and A = B in bspec) apply auto @@ -133,7 +133,7 @@ mono2(A, r, B, s, C, t, h); refl(A,r); refl(B, s); trans[C](t); \x \ state. f(x):A \ g1(x):B \ g(x):B; k \ C\ \ F:{x \ state. \ t} \w {x \ state. \ t}" -apply (unfold mono2_def Increasing_def) + unfolding mono2_def Increasing_def apply (rule single_LeadsTo_I, auto) apply (drule_tac x = "f (sa) " and P = "\k. F \ Stable (X (k))" for X in bspec) apply auto @@ -275,7 +275,7 @@ lemma Always_Follows1: "\F \ Always({s \ state. f(s) = g(s)}); F \ Follows(A, r, f, h); \x \ state. g(x):A\ \ F \ Follows(A, r, g, h)" -apply (unfold Follows_def Increasing_def Stable_def) + unfolding Follows_def Increasing_def Stable_def apply (simp add: INT_iff, auto) apply (rule_tac [3] C = "{s \ state. f(s)=g(s)}" and A = "{s \ state. \ r}" @@ -293,7 +293,7 @@ lemma Always_Follows2: "\F \ Always({s \ state. g(s) = h(s)}); F \ Follows(A, r, f, g); \x \ state. h(x):A\ \ F \ Follows(A, r, f, h)" -apply (unfold Follows_def Increasing_def Stable_def) + unfolding Follows_def Increasing_def Stable_def apply (simp add: INT_iff, auto) apply (rule_tac [3] C = "{s \ state. g (s) =h (s) }" and A = "{s \ state. \ r}" @@ -352,7 +352,7 @@ lemma MultLe_refl1 [simp]: "\multiset(M); mset_of(M)<=A\ \ \M, M\ \ MultLe(A, r)" -apply (unfold MultLe_def id_def lam_def) + unfolding MultLe_def id_def lam_def apply (auto simp add: Mult_iff_multiset) done @@ -361,7 +361,7 @@ lemma trans_on_MultLe [simp]: "trans[Mult(A)](MultLe(A,r))" -apply (unfold MultLe_def trans_on_def) + unfolding MultLe_def trans_on_def apply (auto intro: trancl_trans simp add: multirel_def) done @@ -379,7 +379,7 @@ lemma part_order_imp_part_ord: "part_order(A, r) \ part_ord(A, r-id(A))" -apply (unfold part_order_def part_ord_def) + unfolding part_order_def part_ord_def apply (simp add: refl_def id_def lam_def irrefl_def, auto) apply (simp (no_asm) add: trans_on_def) apply auto @@ -390,7 +390,7 @@ lemma antisym_MultLe [simp]: "part_order(A, r) \ antisym(MultLe(A,r))" -apply (unfold MultLe_def antisym_def) + unfolding MultLe_def antisym_def apply (drule part_order_imp_part_ord, auto) apply (drule irrefl_on_multirel) apply (frule multirel_type [THEN subsetD]) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/GenPrefix.thy --- a/src/ZF/UNITY/GenPrefix.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/GenPrefix.thy Tue Sep 27 18:02:34 2022 +0100 @@ -588,13 +588,13 @@ declare refl_Ge [iff] lemma antisym_Ge: "antisym(Ge)" -apply (unfold antisym_def Ge_def) + unfolding antisym_def Ge_def apply (auto intro: le_anti_sym) done declare antisym_Ge [iff] lemma trans_Ge: "trans(Ge)" -apply (unfold trans_def Ge_def) + unfolding trans_def Ge_def apply (auto intro: le_trans) done declare trans_Ge [iff] @@ -611,7 +611,7 @@ lemma prefix_imp_pfixGe: "\xs,ys\:prefix(nat) \ xs pfixGe ys" -apply (unfold prefix_def Ge_def) + unfolding prefix_def Ge_def apply (rule gen_prefix_mono [THEN subsetD], auto) done (* Added by Sidi \ prefix and take *) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/Increasing.thy --- a/src/ZF/UNITY/Increasing.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/Increasing.thy Tue Sep 27 18:02:34 2022 +0100 @@ -48,7 +48,7 @@ lemma increasing_constant [simp]: "F \ increasing[A](r, \s. c) \ F \ program \ c \ A" -apply (unfold increasing_def stable_def) + unfolding increasing_def stable_def apply (subgoal_tac "\x. x \ state") apply (auto dest: stable_type [THEN subsetD] intro: st0_in_state) done @@ -94,7 +94,7 @@ lemma increasing_imp_Increasing: "F \ increasing[A](r, f) \ F \ Increasing[A](r, f)" -apply (unfold increasing_def Increasing_def) + unfolding increasing_def Increasing_def apply (auto intro: stable_imp_Stable) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/Monotonicity.thy --- a/src/ZF/UNITY/Monotonicity.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/Monotonicity.thy Tue Sep 27 18:02:34 2022 +0100 @@ -109,7 +109,7 @@ lemma mono_munion [iff]: "mono2(Mult(A), MultLe(A,r), Mult(A), MultLe(A, r), Mult(A), MultLe(A, r), munion)" -apply (unfold mono2_def MultLe_def) + unfolding mono2_def MultLe_def apply (auto simp add: Mult_iff_multiset) apply (blast intro: munion_multirel_mono munion_multirel_mono1 munion_multirel_mono2 multiset_into_Mult)+ done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/UNITY.thy --- a/src/ZF/UNITY/UNITY.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/UNITY.thy Tue Sep 27 18:02:34 2022 +0100 @@ -567,7 +567,7 @@ done lemma invariantI: "\Init(F)\A; F \ stable(A)\ \ F \ invariant(A)" -apply (unfold invariant_def initially_def) + unfolding invariant_def initially_def apply (frule stable_type [THEN subsetD], auto) done @@ -583,7 +583,7 @@ \<^term>\invariant(A) \ invariant(B) \ invariant (A \ B)\\ lemma invariant_Int: "\F \ invariant(A); F \ invariant(B)\ \ F \ invariant(A \ B)" -apply (unfold invariant_def initially_def) + unfolding invariant_def initially_def apply (simp add: stable_Int, blast) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/Union.thy --- a/src/ZF/UNITY/Union.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/Union.thy Tue Sep 27 18:02:34 2022 +0100 @@ -121,7 +121,7 @@ by auto lemma Join_SKIP_left [simp]: "SKIP \ F = programify(F)" -apply (unfold Join_def SKIP_def) + unfolding Join_def SKIP_def apply (auto simp add: Int_absorb cons_eq) done @@ -364,7 +364,7 @@ lemma stable_Join_constrains: "\F \ stable(A); G \ A co A'\ \ F \ G \ A co A'" -apply (unfold stable_def constrains_def Join_def st_set_def) + unfolding stable_def constrains_def Join_def st_set_def apply (cut_tac F = F in Acts_type) apply (cut_tac F = G in Acts_type, force) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/UNITY/WFair.thy --- a/src/ZF/UNITY/WFair.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/UNITY/WFair.thy Tue Sep 27 18:02:34 2022 +0100 @@ -165,13 +165,13 @@ lemma leadsToD2: "F \ A \ B \ F \ program \ st_set(A) \ st_set(B)" -apply (unfold leadsTo_def st_set_def) + unfolding leadsTo_def st_set_def apply (blast dest: leads_left leads_right) done lemma leadsTo_Basis: "\F \ A ensures B; st_set(A); st_set(B)\ \ F \ A \ B" -apply (unfold leadsTo_def st_set_def) + unfolding leadsTo_def st_set_def apply (cut_tac ensures_type) apply (auto intro: leads.Basis) done @@ -204,14 +204,14 @@ lemma leadsTo_Union: "\\A. A \ S \ F \ A \ B; F \ program; st_set(B)\ \ F \ \(S) \ B" -apply (unfold leadsTo_def st_set_def) + unfolding leadsTo_def st_set_def apply (blast intro: leads.Union dest: leads_left) done lemma leadsTo_Union_Int: "\\A. A \ S \F \ (A \ C) \ B; F \ program; st_set(B)\ \ F \ (\(S)Int C)\ B" -apply (unfold leadsTo_def st_set_def) + unfolding leadsTo_def st_set_def apply (simp only: Int_Union_Union) apply (blast dest: leads_left intro: leads.Union) done @@ -441,7 +441,7 @@ lemma psp_ensures: "\F \ A ensures A'; F \ B co B'\\ F: (A \ B') ensures ((A' \ B) \ (B' - B))" -apply (unfold ensures_def constrains_def st_set_def) + unfolding ensures_def constrains_def st_set_def (*speeds up the proof*) apply clarify apply (blast intro: transient_strengthen) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/WF.thy --- a/src/ZF/WF.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/WF.thy Tue Sep 27 18:02:34 2022 +0100 @@ -82,7 +82,7 @@ lemma wf_onI: assumes prem: "\Z u. \Z<=A; u \ Z; \x\Z. \y\Z. \y,x\:r\ \ False" shows "wf[A](r)" -apply (unfold wf_on_def wf_def) + unfolding wf_on_def wf_def apply (rule equals0I [THEN disjCI, THEN allI]) apply (rule_tac Z = Z in prem, blast+) done @@ -287,7 +287,7 @@ apply (rename_tac a1) apply (rule_tac f = "\y\r-``{a1}. wftrec (r,y,H)" in is_the_recfun) apply typecheck -apply (unfold is_recfun_def wftrec_def) + unfolding is_recfun_def wftrec_def \ \Applying the substitution: must keep the quantified assumption!\ apply (rule lam_cong [OF refl]) apply (drule underD) @@ -359,7 +359,7 @@ lemma wfrec_on: "\wf[A](r); a \ A\ \ wfrec[A](r,a,H) = H(a, \x\(r-``{a}) \ A. wfrec[A](r,x,H))" -apply (unfold wf_on_def wfrec_on_def) + unfolding wf_on_def wfrec_on_def apply (erule wfrec [THEN trans]) apply (simp add: vimage_Int_square cons_subset_iff) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/ZF_Base.thy --- a/src/ZF/ZF_Base.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/ZF_Base.thy Tue Sep 27 18:02:34 2022 +0100 @@ -393,7 +393,7 @@ (*Useful for proving A<=B by rewriting in some cases*) lemma subset_iff: "A<=B <-> (\x. x\A \ x\B)" -apply (unfold subset_def Ball_def) + unfolding subset_def Ball_def apply (rule iff_refl) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/Zorn.thy --- a/src/ZF/Zorn.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/Zorn.thy Tue Sep 27 18:02:34 2022 +0100 @@ -312,7 +312,7 @@ apply (rule ccontr) apply (frule_tac z=z in chain_extend) apply (assumption, blast) -apply (unfold maxchain_def super_def) + unfolding maxchain_def super_def apply (blast elim!: equalityCE) done @@ -346,7 +346,7 @@ "next \ increasing(S) \ well_ord(TFin(S,next), Subset_rel(TFin(S,next)))" apply (rule well_ordI) -apply (unfold Subset_rel_def linear_def) + unfolding Subset_rel_def linear_def txt\Prove the well-foundedness goal\ apply (rule wf_onI) apply (frule well_ord_TFin_lemma, assumption) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/ex/CoUnit.thy --- a/src/ZF/ex/CoUnit.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/ex/CoUnit.thy Tue Sep 27 18:02:34 2022 +0100 @@ -37,7 +37,7 @@ apply (rule subsetI) apply (erule counit.coinduct) apply (rule subset_refl) - apply (unfold counit.con_defs) + unfolding counit.con_defs apply fast done @@ -60,7 +60,7 @@ by (fast elim!: counit2.free_elims) lemma Con2_bnd_mono: "bnd_mono(univ(0), \x. Con2(x, x))" - apply (unfold counit2.con_defs) + unfolding counit2.con_defs apply (rule bnd_monoI) apply (assumption | rule subset_refl QPair_subset_univ QPair_mono)+ done @@ -79,7 +79,7 @@ apply (tactic "safe_tac (put_claset subset_cs \<^context>)") apply (erule counit2.cases) apply (erule counit2.cases) - apply (unfold counit2.con_defs) + unfolding counit2.con_defs apply (tactic \fast_tac (put_claset subset_cs \<^context> addSIs [@{thm QPair_Int_Vset_subset_UN} RS @{thm subset_trans}, @{thm QPair_mono}] addSEs [@{thm Ord_in_Ord}, @{thm Pair_inject}]) 1\) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/ex/Commutation.thy --- a/src/ZF/ex/Commutation.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/ex/Commutation.thy Tue Sep 27 18:02:34 2022 +0100 @@ -52,7 +52,7 @@ (* A special case of square_rtrancl_on *) lemma diamond_strip: "diamond(r) \ strip(r)" -apply (unfold diamond_def commute_def strip_def) + unfolding diamond_def commute_def strip_def apply (rule square_rtrancl, simp_all) done @@ -74,7 +74,7 @@ by (simp add: confluent_def) lemma strip_confluent: "strip(r) \ confluent(r)" -apply (unfold strip_def confluent_def diamond_def) + unfolding strip_def confluent_def diamond_def apply (drule commute_rtrancl) apply (simp_all add: rtrancl_field) done @@ -88,7 +88,7 @@ lemma diamond_confluent: "diamond(r) \ confluent(r)" -apply (unfold diamond_def confluent_def) + unfolding diamond_def confluent_def apply (erule commute_rtrancl, simp) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/ex/Group.thy --- a/src/ZF/ex/Group.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/ex/Group.thy Tue Sep 27 18:02:34 2022 +0100 @@ -154,7 +154,7 @@ lemma (in group) inv [simp]: "x \ carrier(G) \ inv x \ carrier(G) \ inv x \ x = \ \ x \ inv x = \" apply (frule inv_ex) - apply (unfold Bex_def m_inv_def) + unfolding Bex_def m_inv_def apply (erule exE) apply (rule theI) apply (rule ex1I, assumption) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/ex/LList.thy --- a/src/ZF/ex/LList.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/ex/LList.thy Tue Sep 27 18:02:34 2022 +0100 @@ -91,7 +91,7 @@ (*** Lemmas to justify using "llist" in other recursive type definitions ***) lemma llist_mono: "A \ B \ llist(A) \ llist(B)" -apply (unfold llist.defs ) + unfolding llist.defs apply (rule gfp_mono) apply (rule llist.bnd_mono) apply (assumption | rule quniv_mono basic_monos)+ @@ -184,7 +184,7 @@ (*** lconst -- defined directly using lfp, but equivalent to a LList_corec ***) lemma lconst_fun_bnd_mono: "bnd_mono(univ(a), \l. LCons(a,l))" -apply (unfold llist.con_defs ) + unfolding llist.con_defs apply (rule bnd_monoI) apply (blast intro: A_subset_univ QInr_subset_univ) apply (blast intro: subset_refl QInr_mono QPair_mono) diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/ex/Ramsey.thy --- a/src/ZF/ex/Ramsey.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/ex/Ramsey.thy Tue Sep 27 18:02:34 2022 +0100 @@ -79,7 +79,7 @@ lemma Atleast_succI: "\Atleast(m,B); b\ B\ \ Atleast(succ(m), cons(b,B))" -apply (unfold Atleast_def succ_def) + unfolding Atleast_def succ_def apply (blast intro: inj_extend elim: mem_irrefl) done @@ -148,7 +148,7 @@ "\Indept(I, {z \ V-{a}. \a,z\ \ E}, E); Symmetric(E); a \ V; Atleast(j,I)\ \ Indept(cons(a,I), V, E) \ Atleast(succ(j), cons(a,I))" -apply (unfold Symmetric_def Indept_def) + unfolding Symmetric_def Indept_def apply (blast intro!: Atleast_succI) done @@ -157,7 +157,7 @@ "\Clique(C, {z \ V-{a}. \a,z\:E}, E); Symmetric(E); a \ V; Atleast(j,C)\ \ Clique(cons(a,C), V, E) \ Atleast(succ(j), cons(a,C))" -apply (unfold Symmetric_def Clique_def) + unfolding Symmetric_def Clique_def apply (blast intro!: Atleast_succI) done diff -r 9fc34f76b4e8 -r 8655344f1cf6 src/ZF/func.thy --- a/src/ZF/func.thy Tue Sep 27 17:54:20 2022 +0100 +++ b/src/ZF/func.thy Tue Sep 27 18:02:34 2022 +0100 @@ -318,7 +318,7 @@ by (simp add: restrict_def relation_def, blast) lemma domain_restrict_lam [simp]: "domain(restrict(Lambda(A,f),C)) = A \ C" -apply (unfold restrict_def lam_def) + unfolding restrict_def lam_def apply (rule equalityI) apply (auto simp add: domain_iff) done