# HG changeset patch # User wenzelm # Date 1444507723 -7200 # Node ID 8673ec68c798ba1fffc92a3cc83fed6dd6447553 # Parent 331be2820f902cd19bac42babe4288ff468e6eb0 tuned syntax -- more symbols; diff -r 331be2820f90 -r 8673ec68c798 src/ZF/Constructible/L_axioms.thy --- a/src/ZF/Constructible/L_axioms.thy Sat Oct 10 22:02:23 2015 +0200 +++ b/src/ZF/Constructible/L_axioms.thy Sat Oct 10 22:08:43 2015 +0200 @@ -131,7 +131,7 @@ terms become enormous!\ definition L_Reflects :: "[i=>o,[i,i]=>o] => prop" ("(3REFLECTS/ [_,/ _])") where - "REFLECTS[P,Q] == (??Cl. Closed_Unbounded(Cl) & + "REFLECTS[P,Q] == (\Cl. Closed_Unbounded(Cl) & (\a. Cl(a) \ (\x \ Lset(a). P(x) \ Q(a,x))))" diff -r 331be2820f90 -r 8673ec68c798 src/ZF/Constructible/MetaExists.thy --- a/src/ZF/Constructible/MetaExists.thy Sat Oct 10 22:02:23 2015 +0200 +++ b/src/ZF/Constructible/MetaExists.thy Sat Oct 10 22:08:43 2015 +0200 @@ -6,17 +6,14 @@ theory MetaExists imports Main begin -text\Allows quantification over any term having sort @{text logic}. Used to -quantify over classes. Yields a proposition rather than a FOL formula.\ +text\Allows quantification over any term. Used to quantify over classes. +Yields a proposition rather than a FOL formula.\ definition - ex :: "(('a::{}) => prop) => prop" (binder "?? " 0) where - "ex(P) == (!!Q. (!!x. PROP P(x) ==> PROP Q) ==> PROP Q)" + ex :: "(('a::{}) \ prop) \ prop" (binder "\" 0) where + "ex(P) == (\Q. (\x. PROP P(x) \ PROP Q) \ PROP Q)" -notation (xsymbols) - ex (binder "\" 0) - -lemma meta_exI: "PROP P(x) ==> (?? x. PROP P(x))" +lemma meta_exI: "PROP P(x) ==> (\x. PROP P(x))" proof (unfold ex_def) assume P: "PROP P(x)" fix Q @@ -24,7 +21,7 @@ from P show "PROP Q" by (rule PQ) qed -lemma meta_exE: "[| ?? x. PROP P(x); !!x. PROP P(x) ==> PROP R |] ==> PROP R" +lemma meta_exE: "[|\x. PROP P(x); \x. PROP P(x) ==> PROP R |] ==> PROP R" proof (unfold ex_def) assume QPQ: "\Q. (\x. PROP P(x) \ PROP Q) \ PROP Q" assume PR: "\x. PROP P(x) \ PROP R" diff -r 331be2820f90 -r 8673ec68c798 src/ZF/Constructible/Normal.thy --- a/src/ZF/Constructible/Normal.thy Sat Oct 10 22:02:23 2015 +0200 +++ b/src/ZF/Constructible/Normal.thy Sat Oct 10 22:08:43 2015 +0200 @@ -456,12 +456,9 @@ numbers.\ definition - Aleph :: "i => i" where + Aleph :: "i => i" ("\_" [90] 90) where "Aleph(a) == transrec2(a, nat, \x r. csucc(r))" -notation (xsymbols) - Aleph ("\_" [90] 90) - lemma Card_Aleph [simp, intro]: "Ord(a) ==> Card(Aleph(a))" apply (erule trans_induct3) diff -r 331be2820f90 -r 8673ec68c798 src/ZF/Induct/Comb.thy --- a/src/ZF/Induct/Comb.thy Sat Oct 10 22:02:23 2015 +0200 +++ b/src/ZF/Induct/Comb.thy Sat Oct 10 22:08:43 2015 +0200 @@ -21,10 +21,7 @@ datatype comb = K | S - | app ("p \ comb", "q \ comb") (infixl "@@" 90) - -notation (xsymbols) - app (infixl "\" 90) + | app ("p \ comb", "q \ comb") (infixl "\" 90) text \ Inductive definition of contractions, @{text "-1->"} and diff -r 331be2820f90 -r 8673ec68c798 src/ZF/Induct/Multiset.thy --- a/src/ZF/Induct/Multiset.thy Sat Oct 10 22:02:23 2015 +0200 +++ b/src/ZF/Induct/Multiset.thy Sat Oct 10 22:08:43 2015 +0200 @@ -75,10 +75,8 @@ syntax "_MColl" :: "[pttrn, i, o] => i" ("(1{# _ \ _./ _#})") -syntax (xsymbols) - "_MColl" :: "[pttrn, i, o] => i" ("(1{# _ \ _./ _#})") translations - "{#x \ M. P#}" == "CONST MCollect(M, %x. P)" + "{#x \ M. P#}" == "CONST MCollect(M, \x. P)" (* multiset orderings *)