# HG changeset patch # User nipkow # Date 1546774321 -3600 # Node ID 86e8e7347ac00fcfb7e01f4b0fa779824697bc69 # Parent caa7e406056d7627d5ec2d04a0b66ad081420321 typed definitions diff -r caa7e406056d -r 86e8e7347ac0 src/HOL/Analysis/Abstract_Topology.thy --- a/src/HOL/Analysis/Abstract_Topology.thy Sat Jan 05 20:12:02 2019 +0100 +++ b/src/HOL/Analysis/Abstract_Topology.thy Sun Jan 06 12:32:01 2019 +0100 @@ -13,7 +13,8 @@ subsection \General notion of a topology as a value\ -definition%important "istopology L \ +definition%important istopology :: "('a set \ bool) \ bool" where +"istopology L \ L {} \ (\S T. L S \ L T \ L (S \ T)) \ (\K. Ball K L \ L (\K))" typedef%important 'a topology = "{L::('a set) \ bool. istopology L}" @@ -113,7 +114,8 @@ subsubsection \Closed sets\ -definition%important "closedin U S \ S \ topspace U \ openin U (topspace U - S)" +definition%important closedin :: "'a topology \ 'a set \ bool" where +"closedin U S \ S \ topspace U \ openin U (topspace U - S)" lemma closedin_subset: "closedin U S \ S \ topspace U" by (metis closedin_def) @@ -230,7 +232,8 @@ subsection \Subspace topology\ -definition%important "subtopology U V = topology (\T. \S. T = S \ V \ openin U S)" +definition%important subtopology :: "'a topology \ 'a set \ 'a topology" where +"subtopology U V = topology (\T. \S. T = S \ V \ openin U S)" lemma istopology_subtopology: "istopology (\T. \S. T = S \ V \ openin U S)" (is "istopology ?L") diff -r caa7e406056d -r 86e8e7347ac0 src/HOL/Analysis/Inner_Product.thy --- a/src/HOL/Analysis/Inner_Product.thy Sat Jan 05 20:12:02 2019 +0100 +++ b/src/HOL/Analysis/Inner_Product.thy Sun Jan 06 12:32:01 2019 +0100 @@ -2,7 +2,7 @@ Author: Brian Huffman *) -section \Inner Product Spaces and the Gradient Derivative\ +section \Inner Product Spaces and Gradient Derivative\ theory Inner_Product imports Complex_Main diff -r caa7e406056d -r 86e8e7347ac0 src/HOL/Analysis/L2_Norm.thy --- a/src/HOL/Analysis/L2_Norm.thy Sat Jan 05 20:12:02 2019 +0100 +++ b/src/HOL/Analysis/L2_Norm.thy Sun Jan 06 12:32:01 2019 +0100 @@ -8,7 +8,8 @@ imports Complex_Main begin -definition %important "L2_set f A = sqrt (\i\A. (f i)\<^sup>2)" +definition%important L2_set :: "('a \ real) \ 'a set \ real" where +"L2_set f A = sqrt (\i\A. (f i)\<^sup>2)" lemma L2_set_cong: "\A = B; \x. x \ B \ f x = g x\ \ L2_set f A = L2_set g B" diff -r caa7e406056d -r 86e8e7347ac0 src/HOL/Analysis/Linear_Algebra.thy --- a/src/HOL/Analysis/Linear_Algebra.thy Sat Jan 05 20:12:02 2019 +0100 +++ b/src/HOL/Analysis/Linear_Algebra.thy Sun Jan 06 12:32:01 2019 +0100 @@ -183,7 +183,9 @@ subsection \Bilinear functions\ -definition%important "bilinear f \ (\x. linear (\y. f x y)) \ (\y. linear (\x. f x y))" +definition%important +bilinear :: "('a::real_vector \ 'b::real_vector \ 'c::real_vector) \ bool" where +"bilinear f \ (\x. linear (\y. f x y)) \ (\y. linear (\x. f x y))" lemma bilinear_ladd: "bilinear h \ h (x + y) z = h x z + h y z" by (simp add: bilinear_def linear_iff) @@ -239,7 +241,8 @@ subsection \Adjoints\ -definition%important "adjoint f = (SOME f'. \x y. f x \ y = x \ f' y)" +definition%important adjoint :: "(('a::real_inner) \ ('b::real_inner)) \ 'b \ 'a" where +"adjoint f = (SOME f'. \x y. f x \ y = x \ f' y)" lemma adjoint_unique: assumes "\x y. inner (f x) y = inner x (g y)"