# HG changeset patch # User haftmann # Date 1266916275 -3600 # Node ID 870dfea4f9c0775cc7918779d1f891fda20cce50 # Parent fbdc860d87a37bb70a663607df3bb5dabba1c47b dropped axclass; dropped Id; session theory Hoare.thy diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/Examples.thy --- a/src/HOL/Hoare/Examples.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/Examples.thy Tue Feb 23 10:11:15 2010 +0100 @@ -1,12 +1,11 @@ (* Title: HOL/Hoare/Examples.thy - ID: $Id$ Author: Norbert Galm Copyright 1998 TUM Various examples. *) -theory Examples imports Hoare Arith2 begin +theory Examples imports Hoare_Logic Arith2 begin (*** ARITHMETIC ***) diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/ExamplesAbort.thy --- a/src/HOL/Hoare/ExamplesAbort.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/ExamplesAbort.thy Tue Feb 23 10:11:15 2010 +0100 @@ -1,12 +1,11 @@ (* Title: HOL/Hoare/ExamplesAbort.thy - ID: $Id$ Author: Tobias Nipkow Copyright 1998 TUM Some small examples for programs that may abort. *) -theory ExamplesAbort imports HoareAbort begin +theory ExamplesAbort imports Hoare_Logic_Abort begin lemma "VARS x y z::nat {y = z & z \ 0} z \ 0 \ x := y div z {x = 1}" diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/HeapSyntax.thy --- a/src/HOL/Hoare/HeapSyntax.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/HeapSyntax.thy Tue Feb 23 10:11:15 2010 +0100 @@ -3,7 +3,7 @@ Copyright 2002 TUM *) -theory HeapSyntax imports Hoare Heap begin +theory HeapSyntax imports Hoare_Logic Heap begin subsection "Field access and update" diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/HeapSyntaxAbort.thy --- a/src/HOL/Hoare/HeapSyntaxAbort.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/HeapSyntaxAbort.thy Tue Feb 23 10:11:15 2010 +0100 @@ -3,7 +3,7 @@ Copyright 2002 TUM *) -theory HeapSyntaxAbort imports HoareAbort Heap begin +theory HeapSyntaxAbort imports Hoare_Logic_Abort Heap begin subsection "Field access and update" diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/Hoare.thy --- a/src/HOL/Hoare/Hoare.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/Hoare.thy Tue Feb 23 10:11:15 2010 +0100 @@ -1,245 +1,9 @@ -(* Title: HOL/Hoare/Hoare.thy - Author: Leonor Prensa Nieto & Tobias Nipkow - Copyright 1998 TUM - -Sugared semantic embedding of Hoare logic. -Strictly speaking a shallow embedding (as implemented by Norbert Galm -following Mike Gordon) would suffice. Maybe the datatype com comes in useful -later. +(* Author: Tobias Nipkow + Copyright 1998-2003 TUM *) theory Hoare -imports Main -uses ("hoare_tac.ML") +imports Examples ExamplesAbort Pointers0 Pointer_Examples Pointer_ExamplesAbort SchorrWaite Separation begin -types - 'a bexp = "'a set" - 'a assn = "'a set" - -datatype - 'a com = Basic "'a \ 'a" - | Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60) - | Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61) - | While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61) - -abbreviation annskip ("SKIP") where "SKIP == Basic id" - -types 'a sem = "'a => 'a => bool" - -consts iter :: "nat => 'a bexp => 'a sem => 'a sem" -primrec -"iter 0 b S = (%s s'. s ~: b & (s=s'))" -"iter (Suc n) b S = (%s s'. s : b & (? s''. S s s'' & iter n b S s'' s'))" - -consts Sem :: "'a com => 'a sem" -primrec -"Sem(Basic f) s s' = (s' = f s)" -"Sem(c1;c2) s s' = (? s''. Sem c1 s s'' & Sem c2 s'' s')" -"Sem(IF b THEN c1 ELSE c2 FI) s s' = ((s : b --> Sem c1 s s') & - (s ~: b --> Sem c2 s s'))" -"Sem(While b x c) s s' = (? n. iter n b (Sem c) s s')" - -constdefs Valid :: "'a bexp \ 'a com \ 'a bexp \ bool" - "Valid p c q == !s s'. Sem c s s' --> s : p --> s' : q" - - - -(** parse translations **) - -syntax - "_assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61) - -syntax - "_hoare_vars" :: "[idts, 'a assn,'a com,'a assn] => bool" - ("VARS _// {_} // _ // {_}" [0,0,55,0] 50) -syntax ("" output) - "_hoare" :: "['a assn,'a com,'a assn] => bool" - ("{_} // _ // {_}" [0,55,0] 50) -ML {* - -local - -fun abs((a,T),body) = - let val a = absfree(a, dummyT, body) - in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end -in - -fun mk_abstuple [x] body = abs (x, body) - | mk_abstuple (x::xs) body = - Syntax.const @{const_syntax split} $ abs (x, mk_abstuple xs body); - -fun mk_fbody a e [x as (b,_)] = if a=b then e else Syntax.free b - | mk_fbody a e ((b,_)::xs) = - Syntax.const @{const_syntax Pair} $ (if a=b then e else Syntax.free b) $ mk_fbody a e xs; - -fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) end -*} - -(* bexp_tr & assn_tr *) -(*all meta-variables for bexp except for TRUE are translated as if they - were boolean expressions*) -ML{* -fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE" (* FIXME !? *) - | bexp_tr b xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs b; - -fun assn_tr r xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs r; -*} -(* com_tr *) -ML{* -fun com_tr (Const(@{syntax_const "_assign"},_) $ Free (a,_) $ e) xs = - Syntax.const @{const_syntax Basic} $ mk_fexp a e xs - | com_tr (Const (@{const_syntax Basic},_) $ f) xs = Syntax.const @{const_syntax Basic} $ f - | com_tr (Const (@{const_syntax Seq},_) $ c1 $ c2) xs = - Syntax.const @{const_syntax Seq} $ com_tr c1 xs $ com_tr c2 xs - | com_tr (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) xs = - Syntax.const @{const_syntax Cond} $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs - | com_tr (Const (@{const_syntax While},_) $ b $ I $ c) xs = - Syntax.const @{const_syntax While} $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs - | com_tr t _ = t (* if t is just a Free/Var *) -*} - -(* triple_tr *) (* FIXME does not handle "_idtdummy" *) -ML{* -local - -fun var_tr(Free(a,_)) = (a,Bound 0) (* Bound 0 = dummy term *) - | var_tr(Const (@{syntax_const "_constrain"}, _) $ (Free (a,_)) $ T) = (a,T); - -fun vars_tr (Const (@{syntax_const "_idts"}, _) $ idt $ vars) = var_tr idt :: vars_tr vars - | vars_tr t = [var_tr t] - -in -fun hoare_vars_tr [vars, pre, prg, post] = - let val xs = vars_tr vars - in Syntax.const @{const_syntax Valid} $ - assn_tr pre xs $ com_tr prg xs $ assn_tr post xs - end - | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts); -end -*} - -parse_translation {* [(@{syntax_const "_hoare_vars"}, hoare_vars_tr)] *} - - -(*****************************************************************************) - -(*** print translations ***) -ML{* -fun dest_abstuple (Const (@{const_syntax split},_) $ (Abs(v,_, body))) = - subst_bound (Syntax.free v, dest_abstuple body) - | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body) - | dest_abstuple trm = trm; - -fun abs2list (Const (@{const_syntax split},_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t - | abs2list (Abs(x,T,t)) = [Free (x, T)] - | abs2list _ = []; - -fun mk_ts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = mk_ts t - | mk_ts (Abs(x,_,t)) = mk_ts t - | mk_ts (Const (@{const_syntax Pair},_) $ a $ b) = a::(mk_ts b) - | mk_ts t = [t]; - -fun mk_vts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = - ((Syntax.free x)::(abs2list t), mk_ts t) - | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t]) - | mk_vts t = raise Match; - -fun find_ch [] i xs = (false, (Syntax.free "not_ch", Syntax.free "not_ch")) - | find_ch ((v,t)::vts) i xs = - if t = Bound i then find_ch vts (i-1) xs - else (true, (v, subst_bounds (xs, t))); - -fun is_f (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = true - | is_f (Abs(x,_,t)) = true - | is_f t = false; -*} - -(* assn_tr' & bexp_tr'*) -ML{* -fun assn_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T - | assn_tr' (Const (@{const_syntax inter}, _) $ - (Const (@{const_syntax Collect},_) $ T1) $ (Const (@{const_syntax Collect},_) $ T2)) = - Syntax.const @{const_syntax inter} $ dest_abstuple T1 $ dest_abstuple T2 - | assn_tr' t = t; - -fun bexp_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T - | bexp_tr' t = t; -*} - -(*com_tr' *) -ML{* -fun mk_assign f = - let val (vs, ts) = mk_vts f; - val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs) - in - if ch then Syntax.const @{syntax_const "_assign"} $ fst which $ snd which - else Syntax.const @{const_syntax annskip} - end; - -fun com_tr' (Const (@{const_syntax Basic},_) $ f) = - if is_f f then mk_assign f - else Syntax.const @{const_syntax Basic} $ f - | com_tr' (Const (@{const_syntax Seq},_) $ c1 $ c2) = - Syntax.const @{const_syntax Seq} $ com_tr' c1 $ com_tr' c2 - | com_tr' (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) = - Syntax.const @{const_syntax Cond} $ bexp_tr' b $ com_tr' c1 $ com_tr' c2 - | com_tr' (Const (@{const_syntax While},_) $ b $ I $ c) = - Syntax.const @{const_syntax While} $ bexp_tr' b $ assn_tr' I $ com_tr' c - | com_tr' t = t; - -fun spec_tr' [p, c, q] = - Syntax.const @{syntax_const "_hoare"} $ assn_tr' p $ com_tr' c $ assn_tr' q -*} - -print_translation {* [(@{const_syntax Valid}, spec_tr')] *} - -lemma SkipRule: "p \ q \ Valid p (Basic id) q" -by (auto simp:Valid_def) - -lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" -by (auto simp:Valid_def) - -lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" -by (auto simp:Valid_def) - -lemma CondRule: - "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} - \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" -by (auto simp:Valid_def) - -lemma iter_aux: "! s s'. Sem c s s' --> s : I & s : b --> s' : I ==> - (\s s'. s : I \ iter n b (Sem c) s s' \ s' : I & s' ~: b)"; -apply(induct n) - apply clarsimp -apply(simp (no_asm_use)) -apply blast -done - -lemma WhileRule: - "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" -apply (clarsimp simp:Valid_def) -apply(drule iter_aux) - prefer 2 apply assumption - apply blast -apply blast -done - - -lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}" - by blast - -lemmas AbortRule = SkipRule -- "dummy version" -use "hoare_tac.ML" - -method_setup vcg = {* - Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *} - "verification condition generator" - -method_setup vcg_simp = {* - Scan.succeed (fn ctxt => - SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (simpset_of ctxt)))) *} - "verification condition generator plus simplification" - -end diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/HoareAbort.thy --- a/src/HOL/Hoare/HoareAbort.thy Tue Feb 23 10:11:12 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,269 +0,0 @@ -(* Title: HOL/Hoare/HoareAbort.thy - Author: Leonor Prensa Nieto & Tobias Nipkow - Copyright 2003 TUM - -Like Hoare.thy, but with an Abort statement for modelling run time errors. -*) - -theory HoareAbort -imports Main -uses ("hoare_tac.ML") -begin - -types - 'a bexp = "'a set" - 'a assn = "'a set" - -datatype - 'a com = Basic "'a \ 'a" - | Abort - | Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60) - | Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61) - | While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61) - -abbreviation annskip ("SKIP") where "SKIP == Basic id" - -types 'a sem = "'a option => 'a option => bool" - -consts iter :: "nat => 'a bexp => 'a sem => 'a sem" -primrec -"iter 0 b S = (\s s'. s \ Some ` b \ s=s')" -"iter (Suc n) b S = - (\s s'. s \ Some ` b \ (\s''. S s s'' \ iter n b S s'' s'))" - -consts Sem :: "'a com => 'a sem" -primrec -"Sem(Basic f) s s' = (case s of None \ s' = None | Some t \ s' = Some(f t))" -"Sem Abort s s' = (s' = None)" -"Sem(c1;c2) s s' = (\s''. Sem c1 s s'' \ Sem c2 s'' s')" -"Sem(IF b THEN c1 ELSE c2 FI) s s' = - (case s of None \ s' = None - | Some t \ ((t \ b \ Sem c1 s s') \ (t \ b \ Sem c2 s s')))" -"Sem(While b x c) s s' = - (if s = None then s' = None else \n. iter n b (Sem c) s s')" - -constdefs Valid :: "'a bexp \ 'a com \ 'a bexp \ bool" - "Valid p c q == \s s'. Sem c s s' \ s : Some ` p \ s' : Some ` q" - - - -(** parse translations **) - -syntax - "_assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61) - -syntax - "_hoare_vars" :: "[idts, 'a assn,'a com,'a assn] => bool" - ("VARS _// {_} // _ // {_}" [0,0,55,0] 50) -syntax ("" output) - "_hoare" :: "['a assn,'a com,'a assn] => bool" - ("{_} // _ // {_}" [0,55,0] 50) -ML {* - -local -fun free a = Free(a,dummyT) -fun abs((a,T),body) = - let val a = absfree(a, dummyT, body) - in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end -in - -fun mk_abstuple [x] body = abs (x, body) - | mk_abstuple (x::xs) body = - Syntax.const @{const_syntax split} $ abs (x, mk_abstuple xs body); - -fun mk_fbody a e [x as (b,_)] = if a=b then e else free b - | mk_fbody a e ((b,_)::xs) = - Syntax.const @{const_syntax Pair} $ (if a=b then e else free b) $ mk_fbody a e xs; - -fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) -end -*} - -(* bexp_tr & assn_tr *) -(*all meta-variables for bexp except for TRUE are translated as if they - were boolean expressions*) -ML{* -fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE" (* FIXME !? *) - | bexp_tr b xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs b; - -fun assn_tr r xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs r; -*} -(* com_tr *) -ML{* -fun com_tr (Const (@{syntax_const "_assign"},_) $ Free (a,_) $ e) xs = - Syntax.const @{const_syntax Basic} $ mk_fexp a e xs - | com_tr (Const (@{const_syntax Basic},_) $ f) xs = Syntax.const @{const_syntax Basic} $ f - | com_tr (Const (@{const_syntax Seq},_) $ c1 $ c2) xs = - Syntax.const @{const_syntax Seq} $ com_tr c1 xs $ com_tr c2 xs - | com_tr (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) xs = - Syntax.const @{const_syntax Cond} $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs - | com_tr (Const (@{const_syntax While},_) $ b $ I $ c) xs = - Syntax.const @{const_syntax While} $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs - | com_tr t _ = t (* if t is just a Free/Var *) -*} - -(* triple_tr *) (* FIXME does not handle "_idtdummy" *) -ML{* -local - -fun var_tr (Free (a, _)) = (a, Bound 0) (* Bound 0 = dummy term *) - | var_tr (Const (@{syntax_const "_constrain"}, _) $ Free (a, _) $ T) = (a, T); - -fun vars_tr (Const (@{syntax_const "_idts"}, _) $ idt $ vars) = var_tr idt :: vars_tr vars - | vars_tr t = [var_tr t] - -in -fun hoare_vars_tr [vars, pre, prg, post] = - let val xs = vars_tr vars - in Syntax.const @{const_syntax Valid} $ - assn_tr pre xs $ com_tr prg xs $ assn_tr post xs - end - | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts); -end -*} - -parse_translation {* [(@{syntax_const "_hoare_vars"}, hoare_vars_tr)] *} - - -(*****************************************************************************) - -(*** print translations ***) -ML{* -fun dest_abstuple (Const (@{const_syntax split},_) $ (Abs(v,_, body))) = - subst_bound (Syntax.free v, dest_abstuple body) - | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body) - | dest_abstuple trm = trm; - -fun abs2list (Const (@{const_syntax split},_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t - | abs2list (Abs(x,T,t)) = [Free (x, T)] - | abs2list _ = []; - -fun mk_ts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = mk_ts t - | mk_ts (Abs(x,_,t)) = mk_ts t - | mk_ts (Const (@{const_syntax Pair},_) $ a $ b) = a::(mk_ts b) - | mk_ts t = [t]; - -fun mk_vts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = - ((Syntax.free x)::(abs2list t), mk_ts t) - | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t]) - | mk_vts t = raise Match; - -fun find_ch [] i xs = (false, (Syntax.free "not_ch", Syntax.free "not_ch")) - | find_ch ((v,t)::vts) i xs = - if t = Bound i then find_ch vts (i-1) xs - else (true, (v, subst_bounds (xs,t))); - -fun is_f (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = true - | is_f (Abs(x,_,t)) = true - | is_f t = false; -*} - -(* assn_tr' & bexp_tr'*) -ML{* -fun assn_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T - | assn_tr' (Const (@{const_syntax inter},_) $ (Const (@{const_syntax Collect},_) $ T1) $ - (Const (@{const_syntax Collect},_) $ T2)) = - Syntax.const @{const_syntax inter} $ dest_abstuple T1 $ dest_abstuple T2 - | assn_tr' t = t; - -fun bexp_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T - | bexp_tr' t = t; -*} - -(*com_tr' *) -ML{* -fun mk_assign f = - let val (vs, ts) = mk_vts f; - val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs) - in - if ch then Syntax.const @{syntax_const "_assign"} $ fst which $ snd which - else Syntax.const @{const_syntax annskip} - end; - -fun com_tr' (Const (@{const_syntax Basic},_) $ f) = - if is_f f then mk_assign f else Syntax.const @{const_syntax Basic} $ f - | com_tr' (Const (@{const_syntax Seq},_) $ c1 $ c2) = - Syntax.const @{const_syntax Seq} $ com_tr' c1 $ com_tr' c2 - | com_tr' (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) = - Syntax.const @{const_syntax Cond} $ bexp_tr' b $ com_tr' c1 $ com_tr' c2 - | com_tr' (Const (@{const_syntax While},_) $ b $ I $ c) = - Syntax.const @{const_syntax While} $ bexp_tr' b $ assn_tr' I $ com_tr' c - | com_tr' t = t; - -fun spec_tr' [p, c, q] = - Syntax.const @{syntax_const "_hoare"} $ assn_tr' p $ com_tr' c $ assn_tr' q -*} - -print_translation {* [(@{const_syntax Valid}, spec_tr')] *} - -(*** The proof rules ***) - -lemma SkipRule: "p \ q \ Valid p (Basic id) q" -by (auto simp:Valid_def) - -lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" -by (auto simp:Valid_def) - -lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" -by (auto simp:Valid_def) - -lemma CondRule: - "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} - \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" -by (fastsimp simp:Valid_def image_def) - -lemma iter_aux: - "! s s'. Sem c s s' \ s \ Some ` (I \ b) \ s' \ Some ` I \ - (\s s'. s \ Some ` I \ iter n b (Sem c) s s' \ s' \ Some ` (I \ -b))"; -apply(unfold image_def) -apply(induct n) - apply clarsimp -apply(simp (no_asm_use)) -apply blast -done - -lemma WhileRule: - "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" -apply(simp add:Valid_def) -apply(simp (no_asm) add:image_def) -apply clarify -apply(drule iter_aux) - prefer 2 apply assumption - apply blast -apply blast -done - -lemma AbortRule: "p \ {s. False} \ Valid p Abort q" -by(auto simp:Valid_def) - - -subsection {* Derivation of the proof rules and, most importantly, the VCG tactic *} - -lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}" - by blast - -use "hoare_tac.ML" - -method_setup vcg = {* - Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *} - "verification condition generator" - -method_setup vcg_simp = {* - Scan.succeed (fn ctxt => - SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (simpset_of ctxt)))) *} - "verification condition generator plus simplification" - -(* Special syntax for guarded statements and guarded array updates: *) - -syntax - guarded_com :: "bool \ 'a com \ 'a com" ("(2_ \/ _)" 71) - array_update :: "'a list \ nat \ 'a \ 'a com" ("(2_[_] :=/ _)" [70, 65] 61) -translations - "P \ c" == "IF P THEN c ELSE CONST Abort FI" - "a[i] := v" => "(i < CONST length a) \ (a := CONST list_update a i v)" - (* reverse translation not possible because of duplicate "a" *) - -text{* Note: there is no special syntax for guarded array access. Thus -you must write @{text"j < length a \ a[i] := a!j"}. *} - -end diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/Hoare_Logic.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Hoare/Hoare_Logic.thy Tue Feb 23 10:11:15 2010 +0100 @@ -0,0 +1,245 @@ +(* Title: HOL/Hoare/Hoare.thy + Author: Leonor Prensa Nieto & Tobias Nipkow + Copyright 1998 TUM + +Sugared semantic embedding of Hoare logic. +Strictly speaking a shallow embedding (as implemented by Norbert Galm +following Mike Gordon) would suffice. Maybe the datatype com comes in useful +later. +*) + +theory Hoare_Logic +imports Main +uses ("hoare_tac.ML") +begin + +types + 'a bexp = "'a set" + 'a assn = "'a set" + +datatype + 'a com = Basic "'a \ 'a" + | Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60) + | Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61) + | While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61) + +abbreviation annskip ("SKIP") where "SKIP == Basic id" + +types 'a sem = "'a => 'a => bool" + +consts iter :: "nat => 'a bexp => 'a sem => 'a sem" +primrec +"iter 0 b S = (%s s'. s ~: b & (s=s'))" +"iter (Suc n) b S = (%s s'. s : b & (? s''. S s s'' & iter n b S s'' s'))" + +consts Sem :: "'a com => 'a sem" +primrec +"Sem(Basic f) s s' = (s' = f s)" +"Sem(c1;c2) s s' = (? s''. Sem c1 s s'' & Sem c2 s'' s')" +"Sem(IF b THEN c1 ELSE c2 FI) s s' = ((s : b --> Sem c1 s s') & + (s ~: b --> Sem c2 s s'))" +"Sem(While b x c) s s' = (? n. iter n b (Sem c) s s')" + +constdefs Valid :: "'a bexp \ 'a com \ 'a bexp \ bool" + "Valid p c q == !s s'. Sem c s s' --> s : p --> s' : q" + + + +(** parse translations **) + +syntax + "_assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61) + +syntax + "_hoare_vars" :: "[idts, 'a assn,'a com,'a assn] => bool" + ("VARS _// {_} // _ // {_}" [0,0,55,0] 50) +syntax ("" output) + "_hoare" :: "['a assn,'a com,'a assn] => bool" + ("{_} // _ // {_}" [0,55,0] 50) +ML {* + +local + +fun abs((a,T),body) = + let val a = absfree(a, dummyT, body) + in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end +in + +fun mk_abstuple [x] body = abs (x, body) + | mk_abstuple (x::xs) body = + Syntax.const @{const_syntax split} $ abs (x, mk_abstuple xs body); + +fun mk_fbody a e [x as (b,_)] = if a=b then e else Syntax.free b + | mk_fbody a e ((b,_)::xs) = + Syntax.const @{const_syntax Pair} $ (if a=b then e else Syntax.free b) $ mk_fbody a e xs; + +fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) +end +*} + +(* bexp_tr & assn_tr *) +(*all meta-variables for bexp except for TRUE are translated as if they + were boolean expressions*) +ML{* +fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE" (* FIXME !? *) + | bexp_tr b xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs b; + +fun assn_tr r xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs r; +*} +(* com_tr *) +ML{* +fun com_tr (Const(@{syntax_const "_assign"},_) $ Free (a,_) $ e) xs = + Syntax.const @{const_syntax Basic} $ mk_fexp a e xs + | com_tr (Const (@{const_syntax Basic},_) $ f) xs = Syntax.const @{const_syntax Basic} $ f + | com_tr (Const (@{const_syntax Seq},_) $ c1 $ c2) xs = + Syntax.const @{const_syntax Seq} $ com_tr c1 xs $ com_tr c2 xs + | com_tr (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) xs = + Syntax.const @{const_syntax Cond} $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs + | com_tr (Const (@{const_syntax While},_) $ b $ I $ c) xs = + Syntax.const @{const_syntax While} $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs + | com_tr t _ = t (* if t is just a Free/Var *) +*} + +(* triple_tr *) (* FIXME does not handle "_idtdummy" *) +ML{* +local + +fun var_tr(Free(a,_)) = (a,Bound 0) (* Bound 0 = dummy term *) + | var_tr(Const (@{syntax_const "_constrain"}, _) $ (Free (a,_)) $ T) = (a,T); + +fun vars_tr (Const (@{syntax_const "_idts"}, _) $ idt $ vars) = var_tr idt :: vars_tr vars + | vars_tr t = [var_tr t] + +in +fun hoare_vars_tr [vars, pre, prg, post] = + let val xs = vars_tr vars + in Syntax.const @{const_syntax Valid} $ + assn_tr pre xs $ com_tr prg xs $ assn_tr post xs + end + | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts); +end +*} + +parse_translation {* [(@{syntax_const "_hoare_vars"}, hoare_vars_tr)] *} + + +(*****************************************************************************) + +(*** print translations ***) +ML{* +fun dest_abstuple (Const (@{const_syntax split},_) $ (Abs(v,_, body))) = + subst_bound (Syntax.free v, dest_abstuple body) + | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body) + | dest_abstuple trm = trm; + +fun abs2list (Const (@{const_syntax split},_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t + | abs2list (Abs(x,T,t)) = [Free (x, T)] + | abs2list _ = []; + +fun mk_ts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = mk_ts t + | mk_ts (Abs(x,_,t)) = mk_ts t + | mk_ts (Const (@{const_syntax Pair},_) $ a $ b) = a::(mk_ts b) + | mk_ts t = [t]; + +fun mk_vts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = + ((Syntax.free x)::(abs2list t), mk_ts t) + | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t]) + | mk_vts t = raise Match; + +fun find_ch [] i xs = (false, (Syntax.free "not_ch", Syntax.free "not_ch")) + | find_ch ((v,t)::vts) i xs = + if t = Bound i then find_ch vts (i-1) xs + else (true, (v, subst_bounds (xs, t))); + +fun is_f (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = true + | is_f (Abs(x,_,t)) = true + | is_f t = false; +*} + +(* assn_tr' & bexp_tr'*) +ML{* +fun assn_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T + | assn_tr' (Const (@{const_syntax inter}, _) $ + (Const (@{const_syntax Collect},_) $ T1) $ (Const (@{const_syntax Collect},_) $ T2)) = + Syntax.const @{const_syntax inter} $ dest_abstuple T1 $ dest_abstuple T2 + | assn_tr' t = t; + +fun bexp_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T + | bexp_tr' t = t; +*} + +(*com_tr' *) +ML{* +fun mk_assign f = + let val (vs, ts) = mk_vts f; + val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs) + in + if ch then Syntax.const @{syntax_const "_assign"} $ fst which $ snd which + else Syntax.const @{const_syntax annskip} + end; + +fun com_tr' (Const (@{const_syntax Basic},_) $ f) = + if is_f f then mk_assign f + else Syntax.const @{const_syntax Basic} $ f + | com_tr' (Const (@{const_syntax Seq},_) $ c1 $ c2) = + Syntax.const @{const_syntax Seq} $ com_tr' c1 $ com_tr' c2 + | com_tr' (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) = + Syntax.const @{const_syntax Cond} $ bexp_tr' b $ com_tr' c1 $ com_tr' c2 + | com_tr' (Const (@{const_syntax While},_) $ b $ I $ c) = + Syntax.const @{const_syntax While} $ bexp_tr' b $ assn_tr' I $ com_tr' c + | com_tr' t = t; + +fun spec_tr' [p, c, q] = + Syntax.const @{syntax_const "_hoare"} $ assn_tr' p $ com_tr' c $ assn_tr' q +*} + +print_translation {* [(@{const_syntax Valid}, spec_tr')] *} + +lemma SkipRule: "p \ q \ Valid p (Basic id) q" +by (auto simp:Valid_def) + +lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" +by (auto simp:Valid_def) + +lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" +by (auto simp:Valid_def) + +lemma CondRule: + "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} + \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" +by (auto simp:Valid_def) + +lemma iter_aux: "! s s'. Sem c s s' --> s : I & s : b --> s' : I ==> + (\s s'. s : I \ iter n b (Sem c) s s' \ s' : I & s' ~: b)"; +apply(induct n) + apply clarsimp +apply(simp (no_asm_use)) +apply blast +done + +lemma WhileRule: + "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" +apply (clarsimp simp:Valid_def) +apply(drule iter_aux) + prefer 2 apply assumption + apply blast +apply blast +done + + +lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}" + by blast + +lemmas AbortRule = SkipRule -- "dummy version" +use "hoare_tac.ML" + +method_setup vcg = {* + Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *} + "verification condition generator" + +method_setup vcg_simp = {* + Scan.succeed (fn ctxt => + SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (simpset_of ctxt)))) *} + "verification condition generator plus simplification" + +end diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/Pointer_Examples.thy --- a/src/HOL/Hoare/Pointer_Examples.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/Pointer_Examples.thy Tue Feb 23 10:11:15 2010 +0100 @@ -1,5 +1,4 @@ (* Title: HOL/Hoare/Pointers.thy - ID: $Id$ Author: Tobias Nipkow Copyright 2002 TUM diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/Pointers0.thy --- a/src/HOL/Hoare/Pointers0.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/Pointers0.thy Tue Feb 23 10:11:15 2010 +0100 @@ -9,12 +9,12 @@ - in fact in some case they appear to get (a bit) more complicated. *) -theory Pointers0 imports Hoare begin +theory Pointers0 imports Hoare_Logic begin subsection "References" -axclass ref < type -consts Null :: "'a::ref" +class ref = + fixes Null :: 'a subsection "Field access and update" diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/ROOT.ML --- a/src/HOL/Hoare/ROOT.ML Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/ROOT.ML Tue Feb 23 10:11:15 2010 +0100 @@ -1,8 +1,2 @@ -(* Title: HOL/Hoare/ROOT.ML - ID: $Id$ - Author: Tobias Nipkow - Copyright 1998-2003 TUM -*) -use_thys ["Examples", "ExamplesAbort", "Pointers0", "Pointer_Examples", - "Pointer_ExamplesAbort", "SchorrWaite", "Separation"]; +use_thy "Hoare"; diff -r fbdc860d87a3 -r 870dfea4f9c0 src/HOL/Hoare/Separation.thy --- a/src/HOL/Hoare/Separation.thy Tue Feb 23 10:11:12 2010 +0100 +++ b/src/HOL/Hoare/Separation.thy Tue Feb 23 10:11:15 2010 +0100 @@ -12,7 +12,7 @@ *) -theory Separation imports HoareAbort SepLogHeap begin +theory Separation imports Hoare_Logic_Abort SepLogHeap begin text{* The semantic definition of a few connectives: *}