# HG changeset patch # User huffman # Date 1146439351 -7200 # Node ID 873dad2d8a6d57fe00624d38c5d83997b9725ebe # Parent 8134024166b83bd6ee1ae4e1b6b1dc743eaeea59 add theorem flift2_defined_iff diff -r 8134024166b8 -r 873dad2d8a6d src/HOLCF/Lift.thy --- a/src/HOLCF/Lift.thy Mon May 01 01:21:23 2006 +0200 +++ b/src/HOLCF/Lift.thy Mon May 01 01:22:31 2006 +0200 @@ -173,6 +173,9 @@ lemma flift2_defined [simp]: "x \ \ \ (flift2 f)\x \ \" by (erule lift_definedE, simp) +lemma flift2_defined_iff [simp]: "(flift2 f\x = \) = (x = \)" +by (cases x, simp_all) + text {* \medskip Extension of @{text cont_tac} and installation of simplifier. *}