# HG changeset patch # User wenzelm # Date 1479582632 -3600 # Node ID 874555896035f15218aeb5a7aa57efedb8fb206f # Parent eace715f498830536257e57a9d141732cfc123e2 more symbols; diff -r eace715f4988 -r 874555896035 src/HOL/Analysis/Complex_Transcendental.thy --- a/src/HOL/Analysis/Complex_Transcendental.thy Sat Nov 19 19:43:09 2016 +0100 +++ b/src/HOL/Analysis/Complex_Transcendental.thy Sat Nov 19 20:10:32 2016 +0100 @@ -3265,8 +3265,8 @@ lemma homotopic_circlemaps_imp_homotopic_loops: assumes "homotopic_with (\h. True) (sphere 0 1) S f g" - shows "homotopic_loops S (f \ exp \ (\t. 2 * of_real pi * of_real t * ii)) - (g \ exp \ (\t. 2 * of_real pi * of_real t * ii))" + shows "homotopic_loops S (f \ exp \ (\t. 2 * of_real pi * of_real t * \)) + (g \ exp \ (\t. 2 * of_real pi * of_real t * \))" proof - have "homotopic_with (\f. True) {z. cmod z = 1} S f g" using assms by (auto simp: sphere_def) @@ -3347,7 +3347,7 @@ and contg: "continuous_on (sphere 0 1) g" and gim: "g ` (sphere 0 1) \ S" shows "homotopic_with (\h. True) (sphere 0 1) S f g" proof - - have "homotopic_loops S (f \ exp \ (\t. of_real(2 * pi * t) * ii)) (g \ exp \ (\t. of_real(2 * pi * t) * ii))" + have "homotopic_loops S (f \ exp \ (\t. of_real(2 * pi * t) * \)) (g \ exp \ (\t. of_real(2 * pi * t) * \))" apply (rule S [unfolded simply_connected_homotopic_loops, rule_format]) apply (simp add: homotopic_circlemaps_imp_homotopic_loops homotopic_with_refl contf fim contg gim) done diff -r eace715f4988 -r 874555896035 src/HOL/Analysis/Further_Topology.thy --- a/src/HOL/Analysis/Further_Topology.thy Sat Nov 19 19:43:09 2016 +0100 +++ b/src/HOL/Analysis/Further_Topology.thy Sat Nov 19 20:10:32 2016 +0100 @@ -3240,7 +3240,7 @@ have inj_exp: "inj_on exp (ball (Ln z) 1)" apply (rule inj_on_subset [OF inj_on_exp_pi [of "Ln z"]]) using pi_ge_two by (simp add: ball_subset_ball_iff) - define \ where "\ \ range (\n. (\x. x + of_real (2 * of_int n * pi) * ii) ` (ball(Ln z) 1))" + define \ where "\ \ range (\n. (\x. x + of_real (2 * of_int n * pi) * \) ` (ball(Ln z) 1))" show ?thesis proof (intro exI conjI) show "z \ exp ` (ball(Ln z) 1)" @@ -3286,7 +3286,7 @@ proof fix u assume "u \ \" - then obtain n where n: "u = (\x. x + of_real (2 * of_int n * pi) * ii) ` (ball(Ln z) 1)" + then obtain n where n: "u = (\x. x + of_real (2 * of_int n * pi) * \) ` (ball(Ln z) 1)" by (auto simp: \_def) have "compact (cball (Ln z) 1)" by simp @@ -3325,7 +3325,7 @@ apply (force simp:) done show "\q. homeomorphism u (exp ` ball (Ln z) 1) exp q" - apply (rule_tac x="(\x. x + of_real(2 * n * pi) * ii) \ \" in exI) + apply (rule_tac x="(\x. x + of_real(2 * n * pi) * \) \ \" in exI) unfolding homeomorphism_def apply (intro conjI ballI eq1 continuous_on_exp [OF continuous_on_id]) apply (auto simp: \exp exp2n cont n)