# HG changeset patch # User huffman # Date 1187888033 -7200 # Node ID 87ef9b486068acb64a411d3587b6142a0e574eac # Parent 5073729e5c12a479750168004cb93e17580f4b38 remove unused lemmas diff -r 5073729e5c12 -r 87ef9b486068 src/HOL/Word/Num_Lemmas.thy --- a/src/HOL/Word/Num_Lemmas.thy Thu Aug 23 18:52:44 2007 +0200 +++ b/src/HOL/Word/Num_Lemmas.thy Thu Aug 23 18:53:53 2007 +0200 @@ -7,26 +7,12 @@ theory Num_Lemmas imports Parity begin -lemma contentsI: "y = {x} ==> contents y = x" - unfolding contents_def by auto - -lemmas "split.splits" = split_split split_split_asm - -lemmas funpow_0 = funpow.simps(1) +(* lemmas funpow_0 = funpow.simps(1) *) lemmas funpow_Suc = funpow.simps(2) - -lemma nonemptyE: "S ~= {} ==> (!!x. x : S ==> R) ==> R" - apply (erule contrapos_np) - apply (rule equals0I) - apply auto - done +(* used by BinGeneral.funpow_minus_simp *) lemma gt_or_eq_0: "0 < y \ 0 = (y::nat)" by auto -constdefs - mod_alt :: "'a => 'a => 'a :: Divides.div" - "mod_alt n m == n mod m" - lemmas xtr1 = xtrans(1) lemmas xtr2 = xtrans(2) lemmas xtr3 = xtrans(3) @@ -36,13 +22,7 @@ lemmas xtr7 = xtrans(7) lemmas xtr8 = xtrans(8) -lemma Min_ne_Pls [iff]: - "Numeral.Min ~= Numeral.Pls" - unfolding Min_def Pls_def by auto - -lemmas Pls_ne_Min [iff] = Min_ne_Pls [symmetric] - -lemmas PlsMin_defs [intro!] = +lemmas PlsMin_defs (*[intro!]*) = Pls_def Min_def Pls_def [symmetric] Min_def [symmetric] lemmas PlsMin_simps [simp] = PlsMin_defs [THEN Eq_TrueI] @@ -51,34 +31,20 @@ "False ==> number_of x = number_of y" by auto -lemmas nat_simps = diff_add_inverse2 diff_add_inverse -lemmas nat_iffs = le_add1 le_add2 - -lemma sum_imp_diff: "j = k + i ==> j - i = (k :: nat)" - by (clarsimp simp add: nat_simps) - lemma nobm1: "0 < (number_of w :: nat) ==> number_of w - (1 :: nat) = number_of (Numeral.pred w)" apply (unfold nat_number_of_def One_nat_def nat_1 [symmetric] pred_def) apply (simp add: number_of_eq nat_diff_distrib [symmetric]) done +(* used in BinGeneral, BinOperations, BinBoolList *) lemma zless2: "0 < (2 :: int)" by auto -lemmas zless2p [simp] = zless2 [THEN zero_less_power] -lemmas zle2p [simp] = zless2p [THEN order_less_imp_le] - -lemmas pos_mod_sign2 = zless2 [THEN pos_mod_sign [where b = "2::int"]] -lemmas pos_mod_bound2 = zless2 [THEN pos_mod_bound [where b = "2::int"]] +lemmas zless2p [simp] = zless2 [THEN zero_less_power] (* keep *) +lemmas zle2p [simp] = zless2p [THEN order_less_imp_le] (* keep *) --- "the inverse(s) of @{text number_of}" -lemma nmod2: "n mod (2::int) = 0 | n mod 2 = 1" - using pos_mod_sign2 [of n] pos_mod_bound2 [of n] - unfolding mod_alt_def [symmetric] by auto - - lemma emep1: "even n ==> even d ==> 0 <= d ==> (n + 1) mod (d :: int) = (n mod d) + 1" apply (simp add: add_commute) @@ -90,109 +56,53 @@ lemmas eme1p = emep1 [simplified add_commute] -lemma le_diff_eq': "(a \ c - b) = (b + a \ (c::int))" - by (simp add: le_diff_eq add_commute) - -lemma less_diff_eq': "(a < c - b) = (b + a < (c::int))" - by (simp add: less_diff_eq add_commute) - lemma diff_le_eq': "(a - b \ c) = (a \ b + (c::int))" by (simp add: diff_le_eq add_commute) - -lemma diff_less_eq': "(a - b < c) = (a < b + (c::int))" - by (simp add: diff_less_eq add_commute) - +(* used by BinGeneral.sb_dec_lem' *) lemmas m1mod2k = zless2p [THEN zmod_minus1] -lemmas m1mod22k = mult_pos_pos [OF zless2 zless2p, THEN zmod_minus1] +(* used in WordArith *) + lemmas p1mod22k' = zless2p [THEN order_less_imp_le, THEN pos_zmod_mult_2] -lemmas z1pmod2' = zero_le_one [THEN pos_zmod_mult_2, simplified] -lemmas z1pdiv2' = zero_le_one [THEN pos_zdiv_mult_2, simplified] lemma p1mod22k: "(2 * b + 1) mod (2 * 2 ^ n) = 2 * (b mod 2 ^ n) + (1::int)" by (simp add: p1mod22k' add_commute) - -lemma z1pmod2: - "(2 * b + 1) mod 2 = (1::int)" - by (simp add: z1pmod2' add_commute) - -lemma z1pdiv2: - "(2 * b + 1) div 2 = (b::int)" - by (simp add: z1pdiv2' add_commute) +(* used in BinOperations *) lemmas zdiv_le_dividend = xtr3 [OF zdiv_1 [symmetric] zdiv_mono2, simplified int_one_le_iff_zero_less, simplified, standard] - -lemma no_no [simp]: "number_of (number_of i) = i" - unfolding number_of_eq by simp +(* used in WordShift *) lemma Bit_B0: "k BIT bit.B0 = k + k" by (unfold Bit_def) simp -lemma Bit_B1: - "k BIT bit.B1 = k + k + 1" - by (unfold Bit_def) simp - lemma Bit_B0_2t: "k BIT bit.B0 = 2 * k" by (rule trans, rule Bit_B0) simp - -lemma Bit_B1_2t: "k BIT bit.B1 = 2 * k + 1" - by (rule trans, rule Bit_B1) simp - -lemma B_mod_2': - "X = 2 ==> (w BIT bit.B1) mod X = 1 & (w BIT bit.B0) mod X = 0" - apply (simp (no_asm) only: Bit_B0 Bit_B1) - apply (simp add: z1pmod2) - done - -lemmas B1_mod_2 [simp] = B_mod_2' [OF refl, THEN conjunct1, standard] -lemmas B0_mod_2 [simp] = B_mod_2' [OF refl, THEN conjunct2, standard] - -lemma axxbyy: - "a + m + m = b + n + n ==> (a = 0 | a = 1) ==> (b = 0 | b = 1) ==> - a = b & m = (n :: int)" - apply auto - apply (drule_tac f="%n. n mod 2" in arg_cong) - apply (clarsimp simp: z1pmod2) - apply (drule_tac f="%n. n mod 2" in arg_cong) - apply (clarsimp simp: z1pmod2) - done - -lemma axxmod2: - "(1 + x + x) mod 2 = (1 :: int) & (0 + x + x) mod 2 = (0 :: int)" - by simp (rule z1pmod2) - -lemma axxdiv2: - "(1 + x + x) div 2 = (x :: int) & (0 + x + x) div 2 = (x :: int)" - by simp (rule z1pdiv2) - -lemmas iszero_minus = trans [THEN trans, - OF iszero_def neg_equal_0_iff_equal iszero_def [symmetric], standard] +(* used in BinOperations *) lemmas zadd_diff_inverse = trans [OF diff_add_cancel [symmetric] add_commute, standard] +(* used in WordArith *) lemmas add_diff_cancel2 = add_commute [THEN diff_eq_eq [THEN iffD2], standard] +(* used in WordShift *) lemma zmod_uminus: "- ((a :: int) mod b) mod b = -a mod b" by (simp add : zmod_zminus1_eq_if) - -lemma zmod_zsub_distrib: "((a::int) - b) mod c = (a mod c - b mod c) mod c" - apply (unfold diff_int_def) - apply (rule trans [OF _ zmod_zadd1_eq [symmetric]]) - apply (simp add: zmod_uminus zmod_zadd1_eq [symmetric]) - done +(* used in BinGeneral *) lemma zmod_zsub_right_eq: "((a::int) - b) mod c = (a - b mod c) mod c" apply (unfold diff_int_def) apply (rule trans [OF _ zmod_zadd_right_eq [symmetric]]) apply (simp add : zmod_uminus zmod_zadd_right_eq [symmetric]) done +(* used in BinGeneral, WordGenLib *) lemmas zmod_zsub_left_eq = zmod_zadd_left_eq [where b = "- ?b", simplified diff_int_def [symmetric]] +(* used in BinGeneral, WordGenLib *) lemma zmod_zsub_self [simp]: "((b :: int) - a) mod a = b mod a" @@ -204,10 +114,12 @@ apply (subst zmod_zmult1_eq) apply simp done +(* used in BinGeneral *) lemmas rdmods [symmetric] = zmod_uminus [symmetric] zmod_zsub_left_eq zmod_zsub_right_eq zmod_zadd_left_eq zmod_zadd_right_eq zmod_zmult1_eq zmod_zmult1_eq_rev +(* used in WordArith, WordShift *) lemma mod_plus_right: "((a + x) mod m = (b + x) mod m) = (a mod m = b mod (m :: nat))" @@ -216,27 +128,12 @@ apply arith done -lemma nat_minus_mod: "(n - n mod m) mod m = (0 :: nat)" - by (induct n) (simp_all add : mod_Suc) - -lemmas nat_minus_mod_plus_right = trans [OF nat_minus_mod mod_0 [symmetric], - THEN mod_plus_right [THEN iffD2], standard, simplified] - -lemmas push_mods' = zmod_zadd1_eq [standard] - zmod_zmult_distrib [standard] zmod_zsub_distrib [standard] - zmod_uminus [symmetric, standard] - -lemmas push_mods = push_mods' [THEN eq_reflection, standard] -lemmas pull_mods = push_mods [symmetric] rdmods [THEN eq_reflection, standard] -lemmas mod_simps = - zmod_zmult_self1 [THEN eq_reflection] zmod_zmult_self2 [THEN eq_reflection] - mod_mod_trivial [THEN eq_reflection] - lemma nat_mod_eq: "!!b. b < n ==> a mod n = b mod n ==> a mod n = (b :: nat)" by (induct a) auto lemmas nat_mod_eq' = refl [THEN [2] nat_mod_eq] +(* used in WordArith, WordGenLib *) lemma nat_mod_lem: "(0 :: nat) < n ==> b < n = (b mod n = b)" @@ -245,6 +142,7 @@ apply (erule subst) apply (erule mod_less_divisor) done +(* used in WordArith *) lemma mod_nat_add: "(x :: nat) < z ==> y < z ==> @@ -257,10 +155,7 @@ apply (rule nat_mod_eq') apply arith done - -lemma mod_nat_sub: - "(x :: nat) < z ==> (x - y) mod z = x - y" - by (rule nat_mod_eq') arith +(* used in WordArith, WordGenLib *) lemma int_mod_lem: "(0 :: int) < n ==> (0 <= b & b < n) = (b mod n = b)" @@ -269,12 +164,14 @@ apply (erule_tac [!] subst) apply auto done +(* used in WordDefinition, WordArith, WordShift *) lemma int_mod_eq: "(0 :: int) <= b ==> b < n ==> a mod n = b mod n ==> a mod n = b" by clarsimp (rule mod_pos_pos_trivial) lemmas int_mod_eq' = refl [THEN [3] int_mod_eq] +(* used in WordDefinition, WordArith, WordShift, WordGenLib *) lemma int_mod_le: "0 <= a ==> 0 < (n :: int) ==> a mod n <= a" apply (cases "a < n") @@ -298,88 +195,15 @@ "(x :: int) < z ==> y < z ==> 0 <= y ==> 0 <= x ==> 0 <= z ==> (x + y) mod z = (if x + y < z then x + y else x + y - z)" by (auto intro: int_mod_eq) +(* used in WordArith, WordGenLib *) lemma mod_sub_if_z: "(x :: int) < z ==> y < z ==> 0 <= y ==> 0 <= x ==> 0 <= z ==> (x - y) mod z = (if y <= x then x - y else x - y + z)" by (auto intro: int_mod_eq) - -lemmas zmde = zmod_zdiv_equality [THEN diff_eq_eq [THEN iffD2], symmetric] -lemmas mcl = mult_cancel_left [THEN iffD1, THEN make_pos_rule] - -(* already have this for naturals, div_mult_self1/2, but not for ints *) -lemma zdiv_mult_self: "m ~= (0 :: int) ==> (a + m * n) div m = a div m + n" - apply (rule mcl) - prefer 2 - apply (erule asm_rl) - apply (simp add: zmde ring_distribs) - apply (simp add: push_mods) - done - -(** Rep_Integ **) -lemma eqne: "equiv A r ==> X : A // r ==> X ~= {}" - unfolding equiv_def refl_def quotient_def Image_def by auto - -lemmas Rep_Integ_ne = Integ.Rep_Integ - [THEN equiv_intrel [THEN eqne, simplified Integ_def [symmetric]], standard] - -lemmas riq = Integ.Rep_Integ [simplified Integ_def] -lemmas intrel_refl = refl [THEN equiv_intrel_iff [THEN iffD1], standard] -lemmas Rep_Integ_equiv = quotient_eq_iff - [OF equiv_intrel riq riq, simplified Integ.Rep_Integ_inject, standard] -lemmas Rep_Integ_same = - Rep_Integ_equiv [THEN intrel_refl [THEN rev_iffD2], standard] - -lemma RI_int: "(a, 0) : Rep_Integ (int a)" - unfolding int_def by auto - -lemmas RI_intrel [simp] = UNIV_I [THEN quotientI, - THEN Integ.Abs_Integ_inverse [simplified Integ_def], standard] - -lemma RI_minus: "(a, b) : Rep_Integ x ==> (b, a) : Rep_Integ (- x)" - apply (rule_tac z=x in eq_Abs_Integ) - apply (clarsimp simp: minus) - done +(* used in WordArith, WordGenLib *) -lemma RI_add: - "(a, b) : Rep_Integ x ==> (c, d) : Rep_Integ y ==> - (a + c, b + d) : Rep_Integ (x + y)" - apply (rule_tac z=x in eq_Abs_Integ) - apply (rule_tac z=y in eq_Abs_Integ) - apply (clarsimp simp: add) - done - -lemma mem_same: "a : S ==> a = b ==> b : S" - by fast - -(* two alternative proofs of this *) -lemma RI_eq_diff': "(a, b) : Rep_Integ (int a - int b)" - apply (unfold diff_def) - apply (rule mem_same) - apply (rule RI_minus RI_add RI_int)+ - apply simp - done - -lemma RI_eq_diff: "((a, b) : Rep_Integ x) = (int a - int b = x)" - apply safe - apply (rule Rep_Integ_same) - prefer 2 - apply (erule asm_rl) - apply (rule RI_eq_diff')+ - done - -lemma mod_power_lem: - "a > 1 ==> a ^ n mod a ^ m = (if m <= n then 0 else (a :: int) ^ n)" - apply clarsimp - apply safe - apply (simp add: zdvd_iff_zmod_eq_0 [symmetric]) - apply (drule le_iff_add [THEN iffD1]) - apply (force simp: zpower_zadd_distrib) - apply (rule mod_pos_pos_trivial) - apply (simp add: zero_le_power) - apply (rule power_strict_increasing) - apply auto - done +lemmas mcl = mult_cancel_left [THEN iffD1, THEN make_pos_rule] lemma min_pm [simp]: "min a b + (a - b) = (a :: nat)" by arith @@ -391,40 +215,14 @@ lemmas rev_min_pm1 [simp] = trans [OF add_commute rev_min_pm] -lemma pl_pl_rels: - "a + b = c + d ==> - a >= c & b <= d | a <= c & b >= (d :: nat)" - apply (cut_tac n=a and m=c in nat_le_linear) - apply (safe dest!: le_iff_add [THEN iffD1]) - apply arith+ - done - -lemmas pl_pl_rels' = add_commute [THEN [2] trans, THEN pl_pl_rels] - -lemma minus_eq: "(m - k = m) = (k = 0 | m = (0 :: nat))" - by arith - -lemma pl_pl_mm: "(a :: nat) + b = c + d ==> a - c = d - b" - by arith - -lemmas pl_pl_mm' = add_commute [THEN [2] trans, THEN pl_pl_mm] - lemma min_minus [simp] : "min m (m - k) = (m - k :: nat)" by arith lemmas min_minus' [simp] = trans [OF min_max.inf_commute min_minus] -lemma nat_no_eq_iff: - "(number_of b :: int) >= 0 ==> (number_of c :: int) >= 0 ==> - (number_of b = (number_of c :: nat)) = (b = c)" - apply (unfold nat_number_of_def) - apply safe - apply (drule (2) eq_nat_nat_iff [THEN iffD1]) - apply (simp add: number_of_eq) - done - lemmas dme = box_equals [OF div_mod_equality add_0_right add_0_right] lemmas dtle = xtr3 [OF dme [symmetric] le_add1] +(* used in WordShift *) lemmas th2 = order_trans [OF order_refl [THEN [2] mult_le_mono] dtle] lemma td_gal: @@ -435,6 +233,7 @@ done lemmas td_gal_lt = td_gal [simplified le_def, simplified] +(* used in WordShift *) lemma div_mult_le: "(a :: nat) div b * b <= a" apply (cases b) @@ -442,6 +241,7 @@ apply (rule order_refl [THEN th2]) apply auto done +(* used in WordArith *) lemmas sdl = split_div_lemma [THEN iffD1, symmetric] @@ -456,22 +256,8 @@ apply (rule_tac f="%n. n div f" in arg_cong) apply (simp add : mult_ac) done +(* used in WordShift *) -lemma diff_mod_le: "(a::nat) < d ==> b dvd d ==> a - a mod b <= d - b" - apply (unfold dvd_def) - apply clarify - apply (case_tac k) - apply clarsimp - apply clarify - apply (cases "b > 0") - apply (drule mult_commute [THEN xtr1]) - apply (frule (1) td_gal_lt [THEN iffD1]) - apply (clarsimp simp: le_simps) - apply (rule mult_div_cancel [THEN [2] xtr4]) - apply (rule mult_mono) - apply auto - done - lemma less_le_mult': "w * c < b * c ==> 0 \ c ==> (w + 1) * c \ b * (c::int)" apply (rule mult_right_mono) @@ -481,9 +267,7 @@ done lemmas less_le_mult = less_le_mult' [simplified left_distrib, simplified] - -lemmas less_le_mult_minus = iffD2 [OF le_diff_eq less_le_mult, - simplified left_diff_distrib, standard] +(* used in WordArith *) lemma lrlem': assumes d: "(i::nat) \ j \ m < j'" @@ -506,21 +290,18 @@ apply arith apply simp done +(* used in BinBoolList *) lemma gen_minus: "0 < n ==> f n = f (Suc (n - 1))" by auto +(* used in BinGeneral *) lemma mpl_lem: "j <= (i :: nat) ==> k < j ==> i - j + k < i" apply (induct i, clarsimp) apply (cases j, clarsimp) apply arith done - -lemma nonneg_mod_div: - "0 <= a ==> 0 <= b ==> 0 <= (a mod b :: int) & 0 <= a div b" - apply (cases "b = 0", clarsimp) - apply (auto intro: pos_imp_zdiv_nonneg_iff [THEN iffD2]) - done +(* used in WordShift *) subsection "if simps" @@ -536,5 +317,6 @@ by auto lemmas if_simps = if_x_Not if_Not_x if_cancel if_True if_False if_bool_simps +(* used in WordBitwise *) end