# HG changeset patch # User haftmann # Date 1277731937 -7200 # Node ID 893dcabf0c0486f44c7b91616b1876d926726e3e # Parent a02ea93e88c6a3944beb49b3384cd031782e9897 explicit is better than implicit diff -r a02ea93e88c6 -r 893dcabf0c04 src/HOL/Decision_Procs/Polynomial_List.thy --- a/src/HOL/Decision_Procs/Polynomial_List.thy Mon Jun 28 15:32:13 2010 +0200 +++ b/src/HOL/Decision_Procs/Polynomial_List.thy Mon Jun 28 15:32:17 2010 +0200 @@ -425,7 +425,7 @@ lemma poly_exp_eq_zero: "(poly (p %^ n) = poly ([]::('a::idom) list)) = (poly p = poly [] & n \ 0)" -apply (simp only: fun_eq add: all_simps [symmetric]) +apply (simp only: fun_eq add: HOL.all_simps [symmetric]) apply (rule arg_cong [where f = All]) apply (rule ext) apply (induct_tac "n") diff -r a02ea93e88c6 -r 893dcabf0c04 src/HOL/Extraction/Euclid.thy --- a/src/HOL/Extraction/Euclid.thy Mon Jun 28 15:32:13 2010 +0200 +++ b/src/HOL/Extraction/Euclid.thy Mon Jun 28 15:32:17 2010 +0200 @@ -44,7 +44,7 @@ done lemma prime_eq': "prime (p::nat) = (1 < p \ (\m k. p = m * k \ 1 < m \ m = p))" - by (simp add: prime_eq dvd_def all_simps [symmetric] del: all_simps) + by (simp add: prime_eq dvd_def HOL.all_simps [symmetric] del: HOL.all_simps) lemma not_prime_ex_mk: assumes n: "Suc 0 < n" diff -r a02ea93e88c6 -r 893dcabf0c04 src/HOL/Library/Univ_Poly.thy --- a/src/HOL/Library/Univ_Poly.thy Mon Jun 28 15:32:13 2010 +0200 +++ b/src/HOL/Library/Univ_Poly.thy Mon Jun 28 15:32:17 2010 +0200 @@ -407,7 +407,7 @@ lemma (in idom) poly_exp_eq_zero[simp]: "(poly (p %^ n) = poly []) = (poly p = poly [] & n \ 0)" -apply (simp only: fun_eq add: all_simps [symmetric]) +apply (simp only: fun_eq add: HOL.all_simps [symmetric]) apply (rule arg_cong [where f = All]) apply (rule ext) apply (induct n) diff -r a02ea93e88c6 -r 893dcabf0c04 src/HOL/Library/positivstellensatz.ML --- a/src/HOL/Library/positivstellensatz.ML Mon Jun 28 15:32:13 2010 +0200 +++ b/src/HOL/Library/positivstellensatz.ML Mon Jun 28 15:32:17 2010 +0200 @@ -228,7 +228,7 @@ val prenex_simps = map (fn th => th RS sym) ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @ - @{thms "all_simps"(1-4)} @ @{thms "ex_simps"(1-4)}); + @{thms "HOL.all_simps"(1-4)} @ @{thms "ex_simps"(1-4)}); val real_abs_thms1 = @{lemma "((-1 * abs(x::real) >= r) = (-1 * x >= r & 1 * x >= r))" and diff -r a02ea93e88c6 -r 893dcabf0c04 src/HOLCF/IOA/meta_theory/TLS.thy --- a/src/HOLCF/IOA/meta_theory/TLS.thy Mon Jun 28 15:32:13 2010 +0200 +++ b/src/HOLCF/IOA/meta_theory/TLS.thy Mon Jun 28 15:32:17 2010 +0200 @@ -86,7 +86,7 @@ "(mkfin (a>>s)) = (a>>(mkfin s))" -lemmas [simp del] = ex_simps all_simps split_paired_Ex +lemmas [simp del] = HOL.ex_simps HOL.all_simps split_paired_Ex declaration {* fn _ => Classical.map_cs (fn cs => cs delSWrapper "split_all_tac") *} diff -r a02ea93e88c6 -r 893dcabf0c04 src/HOLCF/IOA/meta_theory/Traces.thy --- a/src/HOLCF/IOA/meta_theory/Traces.thy Mon Jun 28 15:32:13 2010 +0200 +++ b/src/HOLCF/IOA/meta_theory/Traces.thy Mon Jun 28 15:32:17 2010 +0200 @@ -192,7 +192,7 @@ "Traces A == (traces A,asig_of A)" -lemmas [simp del] = ex_simps all_simps split_paired_Ex +lemmas [simp del] = HOL.ex_simps HOL.all_simps split_paired_Ex declare Let_def [simp] declaration {* fn _ => Classical.map_cs (fn cs => cs delSWrapper "split_all_tac") *} diff -r a02ea93e88c6 -r 893dcabf0c04 src/HOLCF/ex/Focus_ex.thy --- a/src/HOLCF/ex/Focus_ex.thy Mon Jun 28 15:32:13 2010 +0200 +++ b/src/HOLCF/ex/Focus_ex.thy Mon Jun 28 15:32:17 2010 +0200 @@ -204,7 +204,7 @@ done lemma lemma4: "is_g(g) --> def_g(g)" -apply (tactic {* simp_tac (HOL_ss delsimps (thms "ex_simps" @ thms "all_simps") +apply (tactic {* simp_tac (HOL_ss delsimps (@{thms HOL.ex_simps} @ @{thms HOL.all_simps}) addsimps [thm "lemma1", thm "lemma2", thm "def_g_def"]) 1 *}) apply (rule impI) apply (erule exE)