# HG changeset patch # User nipkow # Date 1640761671 -3600 # Node ID 8a378e99d9a88d248b83f72e29309b3c899b475d # Parent 9469d922368930243378b4337a59138110def174 added lemma diff -r 9469d9223689 -r 8a378e99d9a8 src/HOL/List.thy --- a/src/HOL/List.thy Sun Dec 26 11:01:27 2021 +0000 +++ b/src/HOL/List.thy Wed Dec 29 08:07:51 2021 +0100 @@ -1244,6 +1244,9 @@ lemma rev_eq_Cons_iff[iff]: "(rev xs = y#ys) = (xs = rev ys @ [y])" by(rule rev_cases[of xs]) auto +lemma length_Suc_conv_rev: "(length xs = Suc n) = (\y ys. xs = ys @ [y] \ length ys = n)" +by (induct xs rule: rev_induct) auto + subsubsection \\<^const>\set\\