# HG changeset patch # User desharna # Date 1741855719 -3600 # Node ID 8a7620fe0e83c50661e1598b8a118a32b1450342 # Parent 8cf503824ccf9981ce516dc99f55b038ede568a4 added lemmas irrefl_relation_ofD, refl_relation_ofD, total_relation_ofD diff -r 8cf503824ccf -r 8a7620fe0e83 NEWS --- a/NEWS Thu Mar 13 09:41:56 2025 +0100 +++ b/NEWS Thu Mar 13 09:48:39 2025 +0100 @@ -30,7 +30,10 @@ - Added lemmas. antisym_relation_of[simp] asym_relation_of[simp] + irrefl_relation_ofD + refl_relation_ofD sym_relation_of[simp] + total_relation_ofD trans_relation_of[simp] * Theory "HOL-Library.Multiset": diff -r 8cf503824ccf -r 8a7620fe0e83 src/HOL/Order_Relation.thy --- a/src/HOL/Order_Relation.thy Thu Mar 13 09:41:56 2025 +0100 +++ b/src/HOL/Order_Relation.thy Thu Mar 13 09:48:39 2025 +0100 @@ -153,6 +153,12 @@ definition relation_of :: "('a \ 'a \ bool) \ 'a set \ ('a \ 'a) set" where "relation_of P A \ { (a, b) \ A \ A. P a b }" +lemma refl_relation_ofD: "refl (relation_of R S) \ reflp_on S R" + by (auto simp: relation_of_def intro: reflp_onI dest: reflD) + +lemma irrefl_relation_ofD: "irrefl (relation_of R S) \ irreflp_on S R" + by (auto simp: relation_of_def intro: irreflp_onI dest: irreflD) + lemma sym_relation_of[simp]: "sym (relation_of R S) \ symp_on S R" proof (rule iffI) show "sym (relation_of R S) \ symp_on S R" @@ -189,6 +195,9 @@ by (auto simp: relation_of_def intro: transI dest: transp_onD) qed +lemma total_relation_ofD: "total (relation_of R S) \ totalp_on S R" + by (auto simp: relation_of_def total_on_def intro: totalp_onI) + lemma Field_relation_of: assumes "relation_of P A \ A \ A" and "refl_on A (relation_of P A)" shows "Field (relation_of P A) = A"