# HG changeset patch # User hoelzl # Date 1282902546 -7200 # Node ID 8b7c009da23ce490b78c97dfcb9c398935f1d986 # Parent 7a6ecce976611bde0701348329a23b388e315b72 added definition of conditional expectation diff -r 7a6ecce97661 -r 8b7c009da23c src/HOL/Probability/Probability_Space.thy --- a/src/HOL/Probability/Probability_Space.thy Fri Aug 27 11:33:37 2010 +0200 +++ b/src/HOL/Probability/Probability_Space.thy Fri Aug 27 11:49:06 2010 +0200 @@ -512,7 +512,9 @@ show ?thesis unfolding simple_integral_subalgebra[OF msN] isoton_def by simp qed -lemma (in prob_space) +section "Conditional Expectation and Probability" + +lemma (in prob_space) conditional_expectation_exists: fixes X :: "'a \ pinfreal" assumes borel: "X \ borel_measurable M" and N_subalgebra: "N \ sets M" "sigma_algebra (M\ sets := N \)" @@ -552,4 +554,30 @@ by (auto intro!: bexI[OF _ Y(1)]) qed +definition (in prob_space) + "conditional_expectation N X = (SOME Y. Y\borel_measurable (M\sets:=N\) + \ (\C\N. positive_integral (\x. Y x * indicator C x) = positive_integral (\x. X x * indicator C x)))" + +abbreviation (in prob_space) + "conditional_probabiltiy N A \ conditional_expectation N (indicator A)" + +lemma (in prob_space) + fixes X :: "'a \ pinfreal" + assumes borel: "X \ borel_measurable M" + and N_subalgebra: "N \ sets M" "sigma_algebra (M\ sets := N \)" + shows borel_measurable_conditional_expectation: + "conditional_expectation N X \ borel_measurable (M\ sets := N \)" + and conditional_expectation: "\C. C \ N \ + positive_integral (\x. conditional_expectation N X x * indicator C x) = + positive_integral (\x. X x * indicator C x)" + (is "\C. C \ N \ ?eq C") +proof - + note CE = conditional_expectation_exists[OF assms, unfolded Bex_def] + then show "conditional_expectation N X \ borel_measurable (M\ sets := N \)" + unfolding conditional_expectation_def by (rule someI2_ex) blast + + from CE show "\C. C\N \ ?eq C" + unfolding conditional_expectation_def by (rule someI2_ex) blast +qed + end