# HG changeset patch # User haftmann # Date 1441570492 -7200 # Node ID 8e5072cba671db5690cec783dbab5325dff3cc7a # Parent 76cd7f1ec257710b3ae0a3be26740dab380a09e4 formally regenerated diff -r 76cd7f1ec257 -r 8e5072cba671 src/HOL/Tools/Qelim/cooper.ML --- a/src/HOL/Tools/Qelim/cooper.ML Sun Sep 06 22:14:51 2015 +0200 +++ b/src/HOL/Tools/Qelim/cooper.ML Sun Sep 06 22:14:52 2015 +0200 @@ -635,7 +635,7 @@ | fm_of_term ps vs (@{term "op = :: bool => _ "} $ t1 $ t2) = Proc.Iff (fm_of_term ps vs t1, fm_of_term ps vs t2) | fm_of_term ps vs (Const (@{const_name Not}, _) $ t') = - Proc.Not (fm_of_term ps vs t') + Proc.NOT (fm_of_term ps vs t') | fm_of_term ps vs (Const (@{const_name Ex}, _) $ Abs abs) = Proc.E (uncurry (fm_of_term ps) (descend vs abs)) | fm_of_term ps vs (Const (@{const_name All}, _) $ Abs abs) = @@ -663,7 +663,7 @@ @{term "op - :: int => _"} $ term_of_num vs t1 $ term_of_num vs t2 | term_of_num vs (Proc.Mul (i, t2)) = @{term "op * :: int => _"} $ HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i) $ term_of_num vs t2 - | term_of_num vs (Proc.Cn (n, i, t')) = + | term_of_num vs (Proc.CN (n, i, t')) = term_of_num vs (Proc.Add (Proc.Mul (i, Proc.Bound n), t')); fun term_of_fm ps vs Proc.T = @{term True} @@ -672,18 +672,18 @@ | term_of_fm ps vs (Proc.Or (t1, t2)) = HOLogic.disj $ term_of_fm ps vs t1 $ term_of_fm ps vs t2 | term_of_fm ps vs (Proc.Imp (t1, t2)) = HOLogic.imp $ term_of_fm ps vs t1 $ term_of_fm ps vs t2 | term_of_fm ps vs (Proc.Iff (t1, t2)) = @{term "op = :: bool => _"} $ term_of_fm ps vs t1 $ term_of_fm ps vs t2 - | term_of_fm ps vs (Proc.Not t') = HOLogic.Not $ term_of_fm ps vs t' + | term_of_fm ps vs (Proc.NOT t') = HOLogic.Not $ term_of_fm ps vs t' | term_of_fm ps vs (Proc.Eq t') = @{term "op = :: int => _ "} $ term_of_num vs t'$ @{term "0::int"} - | term_of_fm ps vs (Proc.NEq t') = term_of_fm ps vs (Proc.Not (Proc.Eq t')) + | term_of_fm ps vs (Proc.NEq t') = term_of_fm ps vs (Proc.NOT (Proc.Eq t')) | term_of_fm ps vs (Proc.Lt t') = @{term "op < :: int => _ "} $ term_of_num vs t' $ @{term "0::int"} | term_of_fm ps vs (Proc.Le t') = @{term "op <= :: int => _ "} $ term_of_num vs t' $ @{term "0::int"} | term_of_fm ps vs (Proc.Gt t') = @{term "op < :: int => _ "} $ @{term "0::int"} $ term_of_num vs t' | term_of_fm ps vs (Proc.Ge t') = @{term "op <= :: int => _ "} $ @{term "0::int"} $ term_of_num vs t' | term_of_fm ps vs (Proc.Dvd (i, t')) = @{term "op dvd :: int => _ "} $ HOLogic.mk_number HOLogic.intT (Proc.integer_of_int i) $ term_of_num vs t' - | term_of_fm ps vs (Proc.NDvd (i, t')) = term_of_fm ps vs (Proc.Not (Proc.Dvd (i, t'))) + | term_of_fm ps vs (Proc.NDvd (i, t')) = term_of_fm ps vs (Proc.NOT (Proc.Dvd (i, t'))) | term_of_fm ps vs (Proc.Closed n) = nth ps (Proc.integer_of_nat n) - | term_of_fm ps vs (Proc.NClosed n) = term_of_fm ps vs (Proc.Not (Proc.Closed n)); + | term_of_fm ps vs (Proc.NClosed n) = term_of_fm ps vs (Proc.NOT (Proc.Closed n)); fun procedure t = let diff -r 76cd7f1ec257 -r 8e5072cba671 src/HOL/Tools/Qelim/cooper_procedure.ML --- a/src/HOL/Tools/Qelim/cooper_procedure.ML Sun Sep 06 22:14:51 2015 +0200 +++ b/src/HOL/Tools/Qelim/cooper_procedure.ML Sun Sep 06 22:14:52 2015 +0200 @@ -5,11 +5,11 @@ val integer_of_int : inta -> int type nat val integer_of_nat : nat -> int - datatype numa = C of inta | Bound of nat | Cn of nat * inta * numa | + datatype numa = C of inta | Bound of nat | CN of nat * inta * numa | Neg of numa | Add of numa * numa | Sub of numa * numa | Mul of inta * numa datatype fm = T | F | Lt of numa | Le of numa | Gt of numa | Ge of numa | Eq of numa | NEq of numa | Dvd of inta * numa | NDvd of inta * numa | - Not of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm + NOT of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm | A of fm | Closed of nat | NClosed of nat val pa : fm -> fm val nat_of_integer : int -> nat @@ -48,26 +48,34 @@ val one_int = {one = one_inta} : inta one; fun sgn_integer k = - (if k = 0 then 0 - else (if k < 0 then (~1 : IntInf.int) else (1 : IntInf.int))); + (if k = (0 : IntInf.int) then (0 : IntInf.int) + else (if k < (0 : IntInf.int) then (~1 : IntInf.int) + else (1 : IntInf.int))); -fun abs_integer k = (if k < 0 then ~ k else k); +fun abs_integer k = (if k < (0 : IntInf.int) then ~ k else k); fun apsnd f (x, y) = (x, f y); fun divmod_integer k l = - (if k = 0 then (0, 0) - else (if l = 0 then (0, k) + (if k = (0 : IntInf.int) then ((0 : IntInf.int), (0 : IntInf.int)) + else (if l = (0 : IntInf.int) then ((0 : IntInf.int), k) else (apsnd o (fn a => fn b => a * b) o sgn_integer) l (if sgn_integer k = sgn_integer l then Integer.div_mod (abs k) (abs l) else let val (r, s) = Integer.div_mod (abs k) (abs l); in - (if s = 0 then (~ r, 0) + (if s = (0 : IntInf.int) then (~ r, (0 : IntInf.int)) else (~ r - (1 : IntInf.int), abs_integer l - s)) end))); +fun fst (x1, x2) = x1; + +fun divide_integer k l = fst (divmod_integer k l); + +fun divide_inta k l = + Int_of_integer (divide_integer (integer_of_int k) (integer_of_int l)); + fun snd (x1, x2) = x2; fun mod_integer k l = snd (divmod_integer k l); @@ -75,19 +83,19 @@ fun mod_int k l = Int_of_integer (mod_integer (integer_of_int k) (integer_of_int l)); -fun fst (x1, x2) = x1; - -fun div_integer k l = fst (divmod_integer k l); +type 'a divide = {divide : 'a -> 'a -> 'a}; +val divide = #divide : 'a divide -> 'a -> 'a -> 'a; -fun div_inta k l = - Int_of_integer (div_integer (integer_of_int k) (integer_of_int l)); - -type 'a diva = {dvd_div : 'a dvd, diva : 'a -> 'a -> 'a, moda : 'a -> 'a -> 'a}; +type 'a diva = + {divide_div : 'a divide, dvd_div : 'a dvd, moda : 'a -> 'a -> 'a}; +val divide_div = #divide_div : 'a diva -> 'a divide; val dvd_div = #dvd_div : 'a diva -> 'a dvd; -val diva = #diva : 'a diva -> 'a -> 'a -> 'a; val moda = #moda : 'a diva -> 'a -> 'a -> 'a; -val div_int = {dvd_div = dvd_int, diva = div_inta, moda = mod_int} : inta diva; +val divide_int = {divide = divide_inta} : inta divide; + +val div_int = {divide_div = divide_int, dvd_div = dvd_int, moda = mod_int} : + inta diva; fun plus_inta k l = Int_of_integer (integer_of_int k + integer_of_int l); @@ -96,7 +104,7 @@ val plus_int = {plus = plus_inta} : inta plus; -val zero_inta : inta = Int_of_integer 0; +val zero_inta : inta = Int_of_integer (0 : IntInf.int); type 'a zero = {zero : 'a}; val zero = #zero : 'a zero -> 'a; @@ -124,40 +132,17 @@ val power_int = {one_power = one_int, times_power = times_int} : inta power; +fun minus_inta k l = Int_of_integer (integer_of_int k - integer_of_int l); + +type 'a minus = {minus : 'a -> 'a -> 'a}; +val minus = #minus : 'a minus -> 'a -> 'a -> 'a; + +val minus_int = {minus = minus_inta} : inta minus; + type 'a ab_semigroup_add = {semigroup_add_ab_semigroup_add : 'a semigroup_add}; val semigroup_add_ab_semigroup_add = #semigroup_add_ab_semigroup_add : 'a ab_semigroup_add -> 'a semigroup_add; -type 'a semigroup_mult = {times_semigroup_mult : 'a times}; -val times_semigroup_mult = #times_semigroup_mult : - 'a semigroup_mult -> 'a times; - -type 'a semiring = - {ab_semigroup_add_semiring : 'a ab_semigroup_add, - semigroup_mult_semiring : 'a semigroup_mult}; -val ab_semigroup_add_semiring = #ab_semigroup_add_semiring : - 'a semiring -> 'a ab_semigroup_add; -val semigroup_mult_semiring = #semigroup_mult_semiring : - 'a semiring -> 'a semigroup_mult; - -val ab_semigroup_add_int = {semigroup_add_ab_semigroup_add = semigroup_add_int} - : inta ab_semigroup_add; - -val semigroup_mult_int = {times_semigroup_mult = times_int} : - inta semigroup_mult; - -val semiring_int = - {ab_semigroup_add_semiring = ab_semigroup_add_int, - semigroup_mult_semiring = semigroup_mult_int} - : inta semiring; - -type 'a mult_zero = {times_mult_zero : 'a times, zero_mult_zero : 'a zero}; -val times_mult_zero = #times_mult_zero : 'a mult_zero -> 'a times; -val zero_mult_zero = #zero_mult_zero : 'a mult_zero -> 'a zero; - -val mult_zero_int = {times_mult_zero = times_int, zero_mult_zero = zero_int} : - inta mult_zero; - type 'a monoid_add = {semigroup_add_monoid_add : 'a semigroup_add, zero_monoid_add : 'a zero}; val semigroup_add_monoid_add = #semigroup_add_monoid_add : @@ -172,6 +157,22 @@ val monoid_add_comm_monoid_add = #monoid_add_comm_monoid_add : 'a comm_monoid_add -> 'a monoid_add; +type 'a mult_zero = {times_mult_zero : 'a times, zero_mult_zero : 'a zero}; +val times_mult_zero = #times_mult_zero : 'a mult_zero -> 'a times; +val zero_mult_zero = #zero_mult_zero : 'a mult_zero -> 'a zero; + +type 'a semigroup_mult = {times_semigroup_mult : 'a times}; +val times_semigroup_mult = #times_semigroup_mult : + 'a semigroup_mult -> 'a times; + +type 'a semiring = + {ab_semigroup_add_semiring : 'a ab_semigroup_add, + semigroup_mult_semiring : 'a semigroup_mult}; +val ab_semigroup_add_semiring = #ab_semigroup_add_semiring : + 'a semiring -> 'a ab_semigroup_add; +val semigroup_mult_semiring = #semigroup_mult_semiring : + 'a semiring -> 'a semigroup_mult; + type 'a semiring_0 = {comm_monoid_add_semiring_0 : 'a comm_monoid_add, mult_zero_semiring_0 : 'a mult_zero, semiring_semiring_0 : 'a semiring}; @@ -181,19 +182,10 @@ 'a semiring_0 -> 'a mult_zero; val semiring_semiring_0 = #semiring_semiring_0 : 'a semiring_0 -> 'a semiring; -val monoid_add_int = - {semigroup_add_monoid_add = semigroup_add_int, zero_monoid_add = zero_int} : - inta monoid_add; - -val comm_monoid_add_int = - {ab_semigroup_add_comm_monoid_add = ab_semigroup_add_int, - monoid_add_comm_monoid_add = monoid_add_int} - : inta comm_monoid_add; - -val semiring_0_int = - {comm_monoid_add_semiring_0 = comm_monoid_add_int, - mult_zero_semiring_0 = mult_zero_int, semiring_semiring_0 = semiring_int} - : inta semiring_0; +type 'a semiring_no_zero_divisors = + {semiring_0_semiring_no_zero_divisors : 'a semiring_0}; +val semiring_0_semiring_no_zero_divisors = #semiring_0_semiring_no_zero_divisors + : 'a semiring_no_zero_divisors -> 'a semiring_0; type 'a monoid_mult = {semigroup_mult_monoid_mult : 'a semigroup_mult, @@ -228,48 +220,16 @@ val zero_neq_one_semiring_1 = #zero_neq_one_semiring_1 : 'a semiring_1 -> 'a zero_neq_one; -val monoid_mult_int = - {semigroup_mult_monoid_mult = semigroup_mult_int, - power_monoid_mult = power_int} - : inta monoid_mult; - -val semiring_numeral_int = - {monoid_mult_semiring_numeral = monoid_mult_int, - numeral_semiring_numeral = numeral_int, - semiring_semiring_numeral = semiring_int} - : inta semiring_numeral; - -val zero_neq_one_int = - {one_zero_neq_one = one_int, zero_zero_neq_one = zero_int} : - inta zero_neq_one; - -val semiring_1_int = - {semiring_numeral_semiring_1 = semiring_numeral_int, - semiring_0_semiring_1 = semiring_0_int, - zero_neq_one_semiring_1 = zero_neq_one_int} - : inta semiring_1; - -type 'a ab_semigroup_mult = - {semigroup_mult_ab_semigroup_mult : 'a semigroup_mult}; -val semigroup_mult_ab_semigroup_mult = #semigroup_mult_ab_semigroup_mult : - 'a ab_semigroup_mult -> 'a semigroup_mult; - -type 'a comm_semiring = - {ab_semigroup_mult_comm_semiring : 'a ab_semigroup_mult, - semiring_comm_semiring : 'a semiring}; -val ab_semigroup_mult_comm_semiring = #ab_semigroup_mult_comm_semiring : - 'a comm_semiring -> 'a ab_semigroup_mult; -val semiring_comm_semiring = #semiring_comm_semiring : - 'a comm_semiring -> 'a semiring; - -val ab_semigroup_mult_int = - {semigroup_mult_ab_semigroup_mult = semigroup_mult_int} : - inta ab_semigroup_mult; - -val comm_semiring_int = - {ab_semigroup_mult_comm_semiring = ab_semigroup_mult_int, - semiring_comm_semiring = semiring_int} - : inta comm_semiring; +type 'a semiring_1_no_zero_divisors = + {semiring_1_semiring_1_no_zero_divisors : 'a semiring_1, + semiring_no_zero_divisors_semiring_1_no_zero_divisors : + 'a semiring_no_zero_divisors}; +val semiring_1_semiring_1_no_zero_divisors = + #semiring_1_semiring_1_no_zero_divisors : + 'a semiring_1_no_zero_divisors -> 'a semiring_1; +val semiring_no_zero_divisors_semiring_1_no_zero_divisors = + #semiring_no_zero_divisors_semiring_1_no_zero_divisors : + 'a semiring_1_no_zero_divisors -> 'a semiring_no_zero_divisors; type 'a cancel_semigroup_add = {semigroup_add_cancel_semigroup_add : 'a semigroup_add}; @@ -278,13 +238,16 @@ type 'a cancel_ab_semigroup_add = {ab_semigroup_add_cancel_ab_semigroup_add : 'a ab_semigroup_add, - cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_semigroup_add}; + cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_semigroup_add, + minus_cancel_ab_semigroup_add : 'a minus}; val ab_semigroup_add_cancel_ab_semigroup_add = #ab_semigroup_add_cancel_ab_semigroup_add : 'a cancel_ab_semigroup_add -> 'a ab_semigroup_add; val cancel_semigroup_add_cancel_ab_semigroup_add = #cancel_semigroup_add_cancel_ab_semigroup_add : 'a cancel_ab_semigroup_add -> 'a cancel_semigroup_add; +val minus_cancel_ab_semigroup_add = #minus_cancel_ab_semigroup_add : + 'a cancel_ab_semigroup_add -> 'a minus; type 'a cancel_comm_monoid_add = {cancel_ab_semigroup_add_cancel_comm_monoid_add : 'a cancel_ab_semigroup_add, @@ -305,6 +268,19 @@ val semiring_0_semiring_0_cancel = #semiring_0_semiring_0_cancel : 'a semiring_0_cancel -> 'a semiring_0; +type 'a ab_semigroup_mult = + {semigroup_mult_ab_semigroup_mult : 'a semigroup_mult}; +val semigroup_mult_ab_semigroup_mult = #semigroup_mult_ab_semigroup_mult : + 'a ab_semigroup_mult -> 'a semigroup_mult; + +type 'a comm_semiring = + {ab_semigroup_mult_comm_semiring : 'a ab_semigroup_mult, + semiring_comm_semiring : 'a semiring}; +val ab_semigroup_mult_comm_semiring = #ab_semigroup_mult_comm_semiring : + 'a comm_semiring -> 'a ab_semigroup_mult; +val semiring_comm_semiring = #semiring_comm_semiring : + 'a comm_semiring -> 'a semiring; + type 'a comm_semiring_0 = {comm_semiring_comm_semiring_0 : 'a comm_semiring, semiring_0_comm_semiring_0 : 'a semiring_0}; @@ -333,21 +309,23 @@ type 'a comm_monoid_mult = {ab_semigroup_mult_comm_monoid_mult : 'a ab_semigroup_mult, - monoid_mult_comm_monoid_mult : 'a monoid_mult}; + monoid_mult_comm_monoid_mult : 'a monoid_mult, + dvd_comm_monoid_mult : 'a dvd}; val ab_semigroup_mult_comm_monoid_mult = #ab_semigroup_mult_comm_monoid_mult : 'a comm_monoid_mult -> 'a ab_semigroup_mult; val monoid_mult_comm_monoid_mult = #monoid_mult_comm_monoid_mult : 'a comm_monoid_mult -> 'a monoid_mult; +val dvd_comm_monoid_mult = #dvd_comm_monoid_mult : + 'a comm_monoid_mult -> 'a dvd; type 'a comm_semiring_1 = {comm_monoid_mult_comm_semiring_1 : 'a comm_monoid_mult, comm_semiring_0_comm_semiring_1 : 'a comm_semiring_0, - dvd_comm_semiring_1 : 'a dvd, semiring_1_comm_semiring_1 : 'a semiring_1}; + semiring_1_comm_semiring_1 : 'a semiring_1}; val comm_monoid_mult_comm_semiring_1 = #comm_monoid_mult_comm_semiring_1 : 'a comm_semiring_1 -> 'a comm_monoid_mult; val comm_semiring_0_comm_semiring_1 = #comm_semiring_0_comm_semiring_1 : 'a comm_semiring_1 -> 'a comm_semiring_0; -val dvd_comm_semiring_1 = #dvd_comm_semiring_1 : 'a comm_semiring_1 -> 'a dvd; val semiring_1_comm_semiring_1 = #semiring_1_comm_semiring_1 : 'a comm_semiring_1 -> 'a semiring_1; @@ -365,22 +343,72 @@ #semiring_1_cancel_comm_semiring_1_cancel : 'a comm_semiring_1_cancel -> 'a semiring_1_cancel; -type 'a no_zero_divisors = - {times_no_zero_divisors : 'a times, zero_no_zero_divisors : 'a zero}; -val times_no_zero_divisors = #times_no_zero_divisors : - 'a no_zero_divisors -> 'a times; -val zero_no_zero_divisors = #zero_no_zero_divisors : - 'a no_zero_divisors -> 'a zero; +type 'a semidom = + {semiring_1_no_zero_divisors_semidom : 'a semiring_1_no_zero_divisors, + comm_semiring_1_cancel_semidom : 'a comm_semiring_1_cancel}; +val semiring_1_no_zero_divisors_semidom = #semiring_1_no_zero_divisors_semidom : + 'a semidom -> 'a semiring_1_no_zero_divisors; +val comm_semiring_1_cancel_semidom = #comm_semiring_1_cancel_semidom : + 'a semidom -> 'a comm_semiring_1_cancel; + +val ab_semigroup_add_int = {semigroup_add_ab_semigroup_add = semigroup_add_int} + : inta ab_semigroup_add; + +val monoid_add_int = + {semigroup_add_monoid_add = semigroup_add_int, zero_monoid_add = zero_int} : + inta monoid_add; + +val comm_monoid_add_int = + {ab_semigroup_add_comm_monoid_add = ab_semigroup_add_int, + monoid_add_comm_monoid_add = monoid_add_int} + : inta comm_monoid_add; + +val mult_zero_int = {times_mult_zero = times_int, zero_mult_zero = zero_int} : + inta mult_zero; + +val semigroup_mult_int = {times_semigroup_mult = times_int} : + inta semigroup_mult; + +val semiring_int = + {ab_semigroup_add_semiring = ab_semigroup_add_int, + semigroup_mult_semiring = semigroup_mult_int} + : inta semiring; -type 'a semiring_div = - {div_semiring_div : 'a diva, - comm_semiring_1_cancel_semiring_div : 'a comm_semiring_1_cancel, - no_zero_divisors_semiring_div : 'a no_zero_divisors}; -val div_semiring_div = #div_semiring_div : 'a semiring_div -> 'a diva; -val comm_semiring_1_cancel_semiring_div = #comm_semiring_1_cancel_semiring_div : - 'a semiring_div -> 'a comm_semiring_1_cancel; -val no_zero_divisors_semiring_div = #no_zero_divisors_semiring_div : - 'a semiring_div -> 'a no_zero_divisors; +val semiring_0_int = + {comm_monoid_add_semiring_0 = comm_monoid_add_int, + mult_zero_semiring_0 = mult_zero_int, semiring_semiring_0 = semiring_int} + : inta semiring_0; + +val semiring_no_zero_divisors_int = + {semiring_0_semiring_no_zero_divisors = semiring_0_int} : + inta semiring_no_zero_divisors; + +val monoid_mult_int = + {semigroup_mult_monoid_mult = semigroup_mult_int, + power_monoid_mult = power_int} + : inta monoid_mult; + +val semiring_numeral_int = + {monoid_mult_semiring_numeral = monoid_mult_int, + numeral_semiring_numeral = numeral_int, + semiring_semiring_numeral = semiring_int} + : inta semiring_numeral; + +val zero_neq_one_int = + {one_zero_neq_one = one_int, zero_zero_neq_one = zero_int} : + inta zero_neq_one; + +val semiring_1_int = + {semiring_numeral_semiring_1 = semiring_numeral_int, + semiring_0_semiring_1 = semiring_0_int, + zero_neq_one_semiring_1 = zero_neq_one_int} + : inta semiring_1; + +val semiring_1_no_zero_divisors_int = + {semiring_1_semiring_1_no_zero_divisors = semiring_1_int, + semiring_no_zero_divisors_semiring_1_no_zero_divisors = + semiring_no_zero_divisors_int} + : inta semiring_1_no_zero_divisors; val cancel_semigroup_add_int = {semigroup_add_cancel_semigroup_add = semigroup_add_int} : @@ -388,7 +416,8 @@ val cancel_ab_semigroup_add_int = {ab_semigroup_add_cancel_ab_semigroup_add = ab_semigroup_add_int, - cancel_semigroup_add_cancel_ab_semigroup_add = cancel_semigroup_add_int} + cancel_semigroup_add_cancel_ab_semigroup_add = cancel_semigroup_add_int, + minus_cancel_ab_semigroup_add = minus_int} : inta cancel_ab_semigroup_add; val cancel_comm_monoid_add_int = @@ -401,6 +430,15 @@ semiring_0_semiring_0_cancel = semiring_0_int} : inta semiring_0_cancel; +val ab_semigroup_mult_int = + {semigroup_mult_ab_semigroup_mult = semigroup_mult_int} : + inta ab_semigroup_mult; + +val comm_semiring_int = + {ab_semigroup_mult_comm_semiring = ab_semigroup_mult_int, + semiring_comm_semiring = semiring_int} + : inta comm_semiring; + val comm_semiring_0_int = {comm_semiring_comm_semiring_0 = comm_semiring_int, semiring_0_comm_semiring_0 = semiring_0_int} @@ -418,13 +456,14 @@ val comm_monoid_mult_int = {ab_semigroup_mult_comm_monoid_mult = ab_semigroup_mult_int, - monoid_mult_comm_monoid_mult = monoid_mult_int} + monoid_mult_comm_monoid_mult = monoid_mult_int, + dvd_comm_monoid_mult = dvd_int} : inta comm_monoid_mult; val comm_semiring_1_int = {comm_monoid_mult_comm_semiring_1 = comm_monoid_mult_int, comm_semiring_0_comm_semiring_1 = comm_semiring_0_int, - dvd_comm_semiring_1 = dvd_int, semiring_1_comm_semiring_1 = semiring_1_int} + semiring_1_comm_semiring_1 = semiring_1_int} : inta comm_semiring_1; val comm_semiring_1_cancel_int = @@ -433,14 +472,60 @@ semiring_1_cancel_comm_semiring_1_cancel = semiring_1_cancel_int} : inta comm_semiring_1_cancel; -val no_zero_divisors_int = - {times_no_zero_divisors = times_int, zero_no_zero_divisors = zero_int} : - inta no_zero_divisors; +val semidom_int = + {semiring_1_no_zero_divisors_semidom = semiring_1_no_zero_divisors_int, + comm_semiring_1_cancel_semidom = comm_semiring_1_cancel_int} + : inta semidom; + +type 'a semiring_no_zero_divisors_cancel = + {semiring_no_zero_divisors_semiring_no_zero_divisors_cancel : + 'a semiring_no_zero_divisors}; +val semiring_no_zero_divisors_semiring_no_zero_divisors_cancel = + #semiring_no_zero_divisors_semiring_no_zero_divisors_cancel : + 'a semiring_no_zero_divisors_cancel -> 'a semiring_no_zero_divisors; + +type 'a semidom_divide = + {divide_semidom_divide : 'a divide, semidom_semidom_divide : 'a semidom, + semiring_no_zero_divisors_cancel_semidom_divide : + 'a semiring_no_zero_divisors_cancel}; +val divide_semidom_divide = #divide_semidom_divide : + 'a semidom_divide -> 'a divide; +val semidom_semidom_divide = #semidom_semidom_divide : + 'a semidom_divide -> 'a semidom; +val semiring_no_zero_divisors_cancel_semidom_divide = + #semiring_no_zero_divisors_cancel_semidom_divide : + 'a semidom_divide -> 'a semiring_no_zero_divisors_cancel; + +type 'a algebraic_semidom = + {semidom_divide_algebraic_semidom : 'a semidom_divide}; +val semidom_divide_algebraic_semidom = #semidom_divide_algebraic_semidom : + 'a algebraic_semidom -> 'a semidom_divide; + +type 'a semiring_div = + {div_semiring_div : 'a diva, + algebraic_semidom_semiring_div : 'a algebraic_semidom}; +val div_semiring_div = #div_semiring_div : 'a semiring_div -> 'a diva; +val algebraic_semidom_semiring_div = #algebraic_semidom_semiring_div : + 'a semiring_div -> 'a algebraic_semidom; + +val semiring_no_zero_divisors_cancel_int = + {semiring_no_zero_divisors_semiring_no_zero_divisors_cancel = + semiring_no_zero_divisors_int} + : inta semiring_no_zero_divisors_cancel; + +val semidom_divide_int = + {divide_semidom_divide = divide_int, semidom_semidom_divide = semidom_int, + semiring_no_zero_divisors_cancel_semidom_divide = + semiring_no_zero_divisors_cancel_int} + : inta semidom_divide; + +val algebraic_semidom_int = + {semidom_divide_algebraic_semidom = semidom_divide_int} : + inta algebraic_semidom; val semiring_div_int = {div_semiring_div = div_int, - comm_semiring_1_cancel_semiring_div = comm_semiring_1_cancel_int, - no_zero_divisors_semiring_div = no_zero_divisors_int} + algebraic_semidom_semiring_div = algebraic_semidom_int} : inta semiring_div; datatype nat = Nat of int; @@ -449,63 +534,62 @@ fun equal_nat m n = integer_of_nat m = integer_of_nat n; -datatype numa = C of inta | Bound of nat | Cn of nat * inta * numa | Neg of numa +datatype numa = C of inta | Bound of nat | CN of nat * inta * numa | Neg of numa | Add of numa * numa | Sub of numa * numa | Mul of inta * numa; -fun equal_numa (Sub (num1, num2)) (Mul (inta, num)) = false - | equal_numa (Mul (inta, num)) (Sub (num1, num2)) = false - | equal_numa (Add (num1, num2)) (Mul (inta, num)) = false - | equal_numa (Mul (inta, num)) (Add (num1, num2)) = false - | equal_numa (Add (num1a, num2a)) (Sub (num1, num2)) = false - | equal_numa (Sub (num1a, num2a)) (Add (num1, num2)) = false - | equal_numa (Neg numa) (Mul (inta, num)) = false - | equal_numa (Mul (inta, numa)) (Neg num) = false - | equal_numa (Neg num) (Sub (num1, num2)) = false - | equal_numa (Sub (num1, num2)) (Neg num) = false - | equal_numa (Neg num) (Add (num1, num2)) = false - | equal_numa (Add (num1, num2)) (Neg num) = false - | equal_numa (Cn (nat, intaa, numa)) (Mul (inta, num)) = false - | equal_numa (Mul (intaa, numa)) (Cn (nat, inta, num)) = false - | equal_numa (Cn (nat, inta, num)) (Sub (num1, num2)) = false - | equal_numa (Sub (num1, num2)) (Cn (nat, inta, num)) = false - | equal_numa (Cn (nat, inta, num)) (Add (num1, num2)) = false - | equal_numa (Add (num1, num2)) (Cn (nat, inta, num)) = false - | equal_numa (Cn (nat, inta, numa)) (Neg num) = false - | equal_numa (Neg numa) (Cn (nat, inta, num)) = false - | equal_numa (Bound nat) (Mul (inta, num)) = false - | equal_numa (Mul (inta, num)) (Bound nat) = false - | equal_numa (Bound nat) (Sub (num1, num2)) = false - | equal_numa (Sub (num1, num2)) (Bound nat) = false - | equal_numa (Bound nat) (Add (num1, num2)) = false - | equal_numa (Add (num1, num2)) (Bound nat) = false - | equal_numa (Bound nat) (Neg num) = false - | equal_numa (Neg num) (Bound nat) = false - | equal_numa (Bound nata) (Cn (nat, inta, num)) = false - | equal_numa (Cn (nata, inta, num)) (Bound nat) = false - | equal_numa (C intaa) (Mul (inta, num)) = false - | equal_numa (Mul (intaa, num)) (C inta) = false - | equal_numa (C inta) (Sub (num1, num2)) = false - | equal_numa (Sub (num1, num2)) (C inta) = false - | equal_numa (C inta) (Add (num1, num2)) = false - | equal_numa (Add (num1, num2)) (C inta) = false - | equal_numa (C inta) (Neg num) = false - | equal_numa (Neg num) (C inta) = false - | equal_numa (C intaa) (Cn (nat, inta, num)) = false - | equal_numa (Cn (nat, intaa, num)) (C inta) = false - | equal_numa (C inta) (Bound nat) = false - | equal_numa (Bound nat) (C inta) = false - | equal_numa (Mul (intaa, numa)) (Mul (inta, num)) = - equal_inta intaa inta andalso equal_numa numa num - | equal_numa (Sub (num1a, num2a)) (Sub (num1, num2)) = - equal_numa num1a num1 andalso equal_numa num2a num2 - | equal_numa (Add (num1a, num2a)) (Add (num1, num2)) = - equal_numa num1a num1 andalso equal_numa num2a num2 - | equal_numa (Neg numa) (Neg num) = equal_numa numa num - | equal_numa (Cn (nata, intaa, numa)) (Cn (nat, inta, num)) = - equal_nat nata nat andalso - (equal_inta intaa inta andalso equal_numa numa num) - | equal_numa (Bound nata) (Bound nat) = equal_nat nata nat - | equal_numa (C intaa) (C inta) = equal_inta intaa inta; +fun equal_numa (Sub (x61, x62)) (Mul (x71, x72)) = false + | equal_numa (Mul (x71, x72)) (Sub (x61, x62)) = false + | equal_numa (Add (x51, x52)) (Mul (x71, x72)) = false + | equal_numa (Mul (x71, x72)) (Add (x51, x52)) = false + | equal_numa (Add (x51, x52)) (Sub (x61, x62)) = false + | equal_numa (Sub (x61, x62)) (Add (x51, x52)) = false + | equal_numa (Neg x4) (Mul (x71, x72)) = false + | equal_numa (Mul (x71, x72)) (Neg x4) = false + | equal_numa (Neg x4) (Sub (x61, x62)) = false + | equal_numa (Sub (x61, x62)) (Neg x4) = false + | equal_numa (Neg x4) (Add (x51, x52)) = false + | equal_numa (Add (x51, x52)) (Neg x4) = false + | equal_numa (CN (x31, x32, x33)) (Mul (x71, x72)) = false + | equal_numa (Mul (x71, x72)) (CN (x31, x32, x33)) = false + | equal_numa (CN (x31, x32, x33)) (Sub (x61, x62)) = false + | equal_numa (Sub (x61, x62)) (CN (x31, x32, x33)) = false + | equal_numa (CN (x31, x32, x33)) (Add (x51, x52)) = false + | equal_numa (Add (x51, x52)) (CN (x31, x32, x33)) = false + | equal_numa (CN (x31, x32, x33)) (Neg x4) = false + | equal_numa (Neg x4) (CN (x31, x32, x33)) = false + | equal_numa (Bound x2) (Mul (x71, x72)) = false + | equal_numa (Mul (x71, x72)) (Bound x2) = false + | equal_numa (Bound x2) (Sub (x61, x62)) = false + | equal_numa (Sub (x61, x62)) (Bound x2) = false + | equal_numa (Bound x2) (Add (x51, x52)) = false + | equal_numa (Add (x51, x52)) (Bound x2) = false + | equal_numa (Bound x2) (Neg x4) = false + | equal_numa (Neg x4) (Bound x2) = false + | equal_numa (Bound x2) (CN (x31, x32, x33)) = false + | equal_numa (CN (x31, x32, x33)) (Bound x2) = false + | equal_numa (C x1) (Mul (x71, x72)) = false + | equal_numa (Mul (x71, x72)) (C x1) = false + | equal_numa (C x1) (Sub (x61, x62)) = false + | equal_numa (Sub (x61, x62)) (C x1) = false + | equal_numa (C x1) (Add (x51, x52)) = false + | equal_numa (Add (x51, x52)) (C x1) = false + | equal_numa (C x1) (Neg x4) = false + | equal_numa (Neg x4) (C x1) = false + | equal_numa (C x1) (CN (x31, x32, x33)) = false + | equal_numa (CN (x31, x32, x33)) (C x1) = false + | equal_numa (C x1) (Bound x2) = false + | equal_numa (Bound x2) (C x1) = false + | equal_numa (Mul (x71, x72)) (Mul (y71, y72)) = + equal_inta x71 y71 andalso equal_numa x72 y72 + | equal_numa (Sub (x61, x62)) (Sub (y61, y62)) = + equal_numa x61 y61 andalso equal_numa x62 y62 + | equal_numa (Add (x51, x52)) (Add (y51, y52)) = + equal_numa x51 y51 andalso equal_numa x52 y52 + | equal_numa (Neg x4) (Neg y4) = equal_numa x4 y4 + | equal_numa (CN (x31, x32, x33)) (CN (y31, y32, y33)) = + equal_nat x31 y31 andalso (equal_inta x32 y32 andalso equal_numa x33 y33) + | equal_numa (Bound x2) (Bound y2) = equal_nat x2 y2 + | equal_numa (C x1) (C y1) = equal_inta x1 y1; val equal_num = {equal = equal_numa} : numa equal; @@ -519,7 +603,7 @@ datatype fm = T | F | Lt of numa | Le of numa | Gt of numa | Ge of numa | Eq of numa | NEq of numa | Dvd of inta * numa | NDvd of inta * numa | - Not of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | + NOT of fm | And of fm * fm | Or of fm * fm | Imp of fm * fm | Iff of fm * fm | E of fm | A of fm | Closed of nat | NClosed of nat; fun id x = (fn xa => xa) x; @@ -543,7 +627,7 @@ | disjuncts (NEq v) = [NEq v] | disjuncts (Dvd (v, va)) = [Dvd (v, va)] | disjuncts (NDvd (v, va)) = [NDvd (v, va)] - | disjuncts (Not v) = [Not v] + | disjuncts (NOT v) = [NOT v] | disjuncts (And (v, va)) = [And (v, va)] | disjuncts (Imp (v, va)) = [Imp (v, va)] | disjuncts (Iff (v, va)) = [Iff (v, va)] @@ -555,371 +639,371 @@ fun foldr f [] = id | foldr f (x :: xs) = f x o foldr f xs; -fun equal_fm (Closed nata) (NClosed nat) = false - | equal_fm (NClosed nata) (Closed nat) = false - | equal_fm (A fm) (NClosed nat) = false - | equal_fm (NClosed nat) (A fm) = false - | equal_fm (A fm) (Closed nat) = false - | equal_fm (Closed nat) (A fm) = false - | equal_fm (E fm) (NClosed nat) = false - | equal_fm (NClosed nat) (E fm) = false - | equal_fm (E fm) (Closed nat) = false - | equal_fm (Closed nat) (E fm) = false - | equal_fm (E fma) (A fm) = false - | equal_fm (A fma) (E fm) = false - | equal_fm (Iff (fm1, fm2)) (NClosed nat) = false - | equal_fm (NClosed nat) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Closed nat) = false - | equal_fm (Closed nat) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (A fm) = false - | equal_fm (A fm) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (E fm) = false - | equal_fm (E fm) (Iff (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (NClosed nat) = false - | equal_fm (NClosed nat) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Closed nat) = false - | equal_fm (Closed nat) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (A fm) = false - | equal_fm (A fm) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (E fm) = false - | equal_fm (E fm) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1a, fm2a)) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1a, fm2a)) (Imp (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (NClosed nat) = false - | equal_fm (NClosed nat) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Closed nat) = false - | equal_fm (Closed nat) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (A fm) = false - | equal_fm (A fm) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (E fm) = false - | equal_fm (E fm) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1a, fm2a)) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1a, fm2a)) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1a, fm2a)) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1a, fm2a)) (Or (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (NClosed nat) = false - | equal_fm (NClosed nat) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Closed nat) = false - | equal_fm (Closed nat) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (A fm) = false - | equal_fm (A fm) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (E fm) = false - | equal_fm (E fm) (And (fm1, fm2)) = false - | equal_fm (And (fm1a, fm2a)) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1a, fm2a)) (And (fm1, fm2)) = false - | equal_fm (And (fm1a, fm2a)) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1a, fm2a)) (And (fm1, fm2)) = false - | equal_fm (And (fm1a, fm2a)) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1a, fm2a)) (And (fm1, fm2)) = false - | equal_fm (Not fm) (NClosed nat) = false - | equal_fm (NClosed nat) (Not fm) = false - | equal_fm (Not fm) (Closed nat) = false - | equal_fm (Closed nat) (Not fm) = false - | equal_fm (Not fma) (A fm) = false - | equal_fm (A fma) (Not fm) = false - | equal_fm (Not fma) (E fm) = false - | equal_fm (E fma) (Not fm) = false - | equal_fm (Not fm) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Not fm) = false - | equal_fm (Not fm) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Not fm) = false - | equal_fm (Not fm) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Not fm) = false - | equal_fm (Not fm) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Not fm) = false - | equal_fm (NDvd (inta, num)) (NClosed nat) = false - | equal_fm (NClosed nat) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (Closed nat) = false - | equal_fm (Closed nat) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (A fm) = false - | equal_fm (A fm) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (E fm) = false - | equal_fm (E fm) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) (Not fm) = false - | equal_fm (Not fm) (NDvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (NClosed nat) = false - | equal_fm (NClosed nat) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (Closed nat) = false - | equal_fm (Closed nat) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (A fm) = false - | equal_fm (A fm) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (E fm) = false - | equal_fm (E fm) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) (Not fm) = false - | equal_fm (Not fm) (Dvd (inta, num)) = false - | equal_fm (Dvd (intaa, numa)) (NDvd (inta, num)) = false - | equal_fm (NDvd (intaa, numa)) (Dvd (inta, num)) = false - | equal_fm (NEq num) (NClosed nat) = false - | equal_fm (NClosed nat) (NEq num) = false - | equal_fm (NEq num) (Closed nat) = false - | equal_fm (Closed nat) (NEq num) = false - | equal_fm (NEq num) (A fm) = false - | equal_fm (A fm) (NEq num) = false - | equal_fm (NEq num) (E fm) = false - | equal_fm (E fm) (NEq num) = false - | equal_fm (NEq num) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (NEq num) = false - | equal_fm (NEq num) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (NEq num) = false - | equal_fm (NEq num) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (NEq num) = false - | equal_fm (NEq num) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (NEq num) = false - | equal_fm (NEq num) (Not fm) = false - | equal_fm (Not fm) (NEq num) = false - | equal_fm (NEq numa) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, numa)) (NEq num) = false - | equal_fm (NEq numa) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, numa)) (NEq num) = false - | equal_fm (Eq num) (NClosed nat) = false - | equal_fm (NClosed nat) (Eq num) = false - | equal_fm (Eq num) (Closed nat) = false - | equal_fm (Closed nat) (Eq num) = false - | equal_fm (Eq num) (A fm) = false - | equal_fm (A fm) (Eq num) = false - | equal_fm (Eq num) (E fm) = false - | equal_fm (E fm) (Eq num) = false - | equal_fm (Eq num) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Eq num) = false - | equal_fm (Eq num) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Eq num) = false - | equal_fm (Eq num) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Eq num) = false - | equal_fm (Eq num) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Eq num) = false - | equal_fm (Eq num) (Not fm) = false - | equal_fm (Not fm) (Eq num) = false - | equal_fm (Eq numa) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, numa)) (Eq num) = false - | equal_fm (Eq numa) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, numa)) (Eq num) = false - | equal_fm (Eq numa) (NEq num) = false - | equal_fm (NEq numa) (Eq num) = false - | equal_fm (Ge num) (NClosed nat) = false - | equal_fm (NClosed nat) (Ge num) = false - | equal_fm (Ge num) (Closed nat) = false - | equal_fm (Closed nat) (Ge num) = false - | equal_fm (Ge num) (A fm) = false - | equal_fm (A fm) (Ge num) = false - | equal_fm (Ge num) (E fm) = false - | equal_fm (E fm) (Ge num) = false - | equal_fm (Ge num) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Ge num) = false - | equal_fm (Ge num) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Ge num) = false - | equal_fm (Ge num) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Ge num) = false - | equal_fm (Ge num) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Ge num) = false - | equal_fm (Ge num) (Not fm) = false - | equal_fm (Not fm) (Ge num) = false - | equal_fm (Ge numa) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, numa)) (Ge num) = false - | equal_fm (Ge numa) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, numa)) (Ge num) = false - | equal_fm (Ge numa) (NEq num) = false - | equal_fm (NEq numa) (Ge num) = false - | equal_fm (Ge numa) (Eq num) = false - | equal_fm (Eq numa) (Ge num) = false - | equal_fm (Gt num) (NClosed nat) = false - | equal_fm (NClosed nat) (Gt num) = false - | equal_fm (Gt num) (Closed nat) = false - | equal_fm (Closed nat) (Gt num) = false - | equal_fm (Gt num) (A fm) = false - | equal_fm (A fm) (Gt num) = false - | equal_fm (Gt num) (E fm) = false - | equal_fm (E fm) (Gt num) = false - | equal_fm (Gt num) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Gt num) = false - | equal_fm (Gt num) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Gt num) = false - | equal_fm (Gt num) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Gt num) = false - | equal_fm (Gt num) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Gt num) = false - | equal_fm (Gt num) (Not fm) = false - | equal_fm (Not fm) (Gt num) = false - | equal_fm (Gt numa) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, numa)) (Gt num) = false - | equal_fm (Gt numa) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, numa)) (Gt num) = false - | equal_fm (Gt numa) (NEq num) = false - | equal_fm (NEq numa) (Gt num) = false - | equal_fm (Gt numa) (Eq num) = false - | equal_fm (Eq numa) (Gt num) = false - | equal_fm (Gt numa) (Ge num) = false - | equal_fm (Ge numa) (Gt num) = false - | equal_fm (Le num) (NClosed nat) = false - | equal_fm (NClosed nat) (Le num) = false - | equal_fm (Le num) (Closed nat) = false - | equal_fm (Closed nat) (Le num) = false - | equal_fm (Le num) (A fm) = false - | equal_fm (A fm) (Le num) = false - | equal_fm (Le num) (E fm) = false - | equal_fm (E fm) (Le num) = false - | equal_fm (Le num) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Le num) = false - | equal_fm (Le num) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Le num) = false - | equal_fm (Le num) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Le num) = false - | equal_fm (Le num) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Le num) = false - | equal_fm (Le num) (Not fm) = false - | equal_fm (Not fm) (Le num) = false - | equal_fm (Le numa) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, numa)) (Le num) = false - | equal_fm (Le numa) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, numa)) (Le num) = false - | equal_fm (Le numa) (NEq num) = false - | equal_fm (NEq numa) (Le num) = false - | equal_fm (Le numa) (Eq num) = false - | equal_fm (Eq numa) (Le num) = false - | equal_fm (Le numa) (Ge num) = false - | equal_fm (Ge numa) (Le num) = false - | equal_fm (Le numa) (Gt num) = false - | equal_fm (Gt numa) (Le num) = false - | equal_fm (Lt num) (NClosed nat) = false - | equal_fm (NClosed nat) (Lt num) = false - | equal_fm (Lt num) (Closed nat) = false - | equal_fm (Closed nat) (Lt num) = false - | equal_fm (Lt num) (A fm) = false - | equal_fm (A fm) (Lt num) = false - | equal_fm (Lt num) (E fm) = false - | equal_fm (E fm) (Lt num) = false - | equal_fm (Lt num) (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) (Lt num) = false - | equal_fm (Lt num) (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) (Lt num) = false - | equal_fm (Lt num) (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) (Lt num) = false - | equal_fm (Lt num) (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) (Lt num) = false - | equal_fm (Lt num) (Not fm) = false - | equal_fm (Not fm) (Lt num) = false - | equal_fm (Lt numa) (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, numa)) (Lt num) = false - | equal_fm (Lt numa) (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, numa)) (Lt num) = false - | equal_fm (Lt numa) (NEq num) = false - | equal_fm (NEq numa) (Lt num) = false - | equal_fm (Lt numa) (Eq num) = false - | equal_fm (Eq numa) (Lt num) = false - | equal_fm (Lt numa) (Ge num) = false - | equal_fm (Ge numa) (Lt num) = false - | equal_fm (Lt numa) (Gt num) = false - | equal_fm (Gt numa) (Lt num) = false - | equal_fm (Lt numa) (Le num) = false - | equal_fm (Le numa) (Lt num) = false - | equal_fm F (NClosed nat) = false - | equal_fm (NClosed nat) F = false - | equal_fm F (Closed nat) = false - | equal_fm (Closed nat) F = false - | equal_fm F (A fm) = false - | equal_fm (A fm) F = false - | equal_fm F (E fm) = false - | equal_fm (E fm) F = false - | equal_fm F (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) F = false - | equal_fm F (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) F = false - | equal_fm F (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) F = false - | equal_fm F (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) F = false - | equal_fm F (Not fm) = false - | equal_fm (Not fm) F = false - | equal_fm F (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) F = false - | equal_fm F (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) F = false - | equal_fm F (NEq num) = false - | equal_fm (NEq num) F = false - | equal_fm F (Eq num) = false - | equal_fm (Eq num) F = false - | equal_fm F (Ge num) = false - | equal_fm (Ge num) F = false - | equal_fm F (Gt num) = false - | equal_fm (Gt num) F = false - | equal_fm F (Le num) = false - | equal_fm (Le num) F = false - | equal_fm F (Lt num) = false - | equal_fm (Lt num) F = false - | equal_fm T (NClosed nat) = false - | equal_fm (NClosed nat) T = false - | equal_fm T (Closed nat) = false - | equal_fm (Closed nat) T = false - | equal_fm T (A fm) = false - | equal_fm (A fm) T = false - | equal_fm T (E fm) = false - | equal_fm (E fm) T = false - | equal_fm T (Iff (fm1, fm2)) = false - | equal_fm (Iff (fm1, fm2)) T = false - | equal_fm T (Imp (fm1, fm2)) = false - | equal_fm (Imp (fm1, fm2)) T = false - | equal_fm T (Or (fm1, fm2)) = false - | equal_fm (Or (fm1, fm2)) T = false - | equal_fm T (And (fm1, fm2)) = false - | equal_fm (And (fm1, fm2)) T = false - | equal_fm T (Not fm) = false - | equal_fm (Not fm) T = false - | equal_fm T (NDvd (inta, num)) = false - | equal_fm (NDvd (inta, num)) T = false - | equal_fm T (Dvd (inta, num)) = false - | equal_fm (Dvd (inta, num)) T = false - | equal_fm T (NEq num) = false - | equal_fm (NEq num) T = false - | equal_fm T (Eq num) = false - | equal_fm (Eq num) T = false - | equal_fm T (Ge num) = false - | equal_fm (Ge num) T = false - | equal_fm T (Gt num) = false - | equal_fm (Gt num) T = false - | equal_fm T (Le num) = false - | equal_fm (Le num) T = false - | equal_fm T (Lt num) = false - | equal_fm (Lt num) T = false +fun equal_fm (Closed x18) (NClosed x19) = false + | equal_fm (NClosed x19) (Closed x18) = false + | equal_fm (A x17) (NClosed x19) = false + | equal_fm (NClosed x19) (A x17) = false + | equal_fm (A x17) (Closed x18) = false + | equal_fm (Closed x18) (A x17) = false + | equal_fm (E x16) (NClosed x19) = false + | equal_fm (NClosed x19) (E x16) = false + | equal_fm (E x16) (Closed x18) = false + | equal_fm (Closed x18) (E x16) = false + | equal_fm (E x16) (A x17) = false + | equal_fm (A x17) (E x16) = false + | equal_fm (Iff (x151, x152)) (NClosed x19) = false + | equal_fm (NClosed x19) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Closed x18) = false + | equal_fm (Closed x18) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (A x17) = false + | equal_fm (A x17) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (E x16) = false + | equal_fm (E x16) (Iff (x151, x152)) = false + | equal_fm (Imp (x141, x142)) (NClosed x19) = false + | equal_fm (NClosed x19) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Closed x18) = false + | equal_fm (Closed x18) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (A x17) = false + | equal_fm (A x17) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (E x16) = false + | equal_fm (E x16) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Imp (x141, x142)) = false + | equal_fm (Or (x131, x132)) (NClosed x19) = false + | equal_fm (NClosed x19) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Closed x18) = false + | equal_fm (Closed x18) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (A x17) = false + | equal_fm (A x17) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (E x16) = false + | equal_fm (E x16) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Or (x131, x132)) = false + | equal_fm (And (x121, x122)) (NClosed x19) = false + | equal_fm (NClosed x19) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Closed x18) = false + | equal_fm (Closed x18) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (A x17) = false + | equal_fm (A x17) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (E x16) = false + | equal_fm (E x16) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (And (x121, x122)) = false + | equal_fm (NOT x11) (NClosed x19) = false + | equal_fm (NClosed x19) (NOT x11) = false + | equal_fm (NOT x11) (Closed x18) = false + | equal_fm (Closed x18) (NOT x11) = false + | equal_fm (NOT x11) (A x17) = false + | equal_fm (A x17) (NOT x11) = false + | equal_fm (NOT x11) (E x16) = false + | equal_fm (E x16) (NOT x11) = false + | equal_fm (NOT x11) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (NOT x11) = false + | equal_fm (NOT x11) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (NOT x11) = false + | equal_fm (NOT x11) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (NOT x11) = false + | equal_fm (NOT x11) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (NOT x11) = false + | equal_fm (NDvd (x101, x102)) (NClosed x19) = false + | equal_fm (NClosed x19) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Closed x18) = false + | equal_fm (Closed x18) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (A x17) = false + | equal_fm (A x17) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (E x16) = false + | equal_fm (E x16) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (NOT x11) = false + | equal_fm (NOT x11) (NDvd (x101, x102)) = false + | equal_fm (Dvd (x91, x92)) (NClosed x19) = false + | equal_fm (NClosed x19) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Closed x18) = false + | equal_fm (Closed x18) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (A x17) = false + | equal_fm (A x17) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (E x16) = false + | equal_fm (E x16) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (NOT x11) = false + | equal_fm (NOT x11) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Dvd (x91, x92)) = false + | equal_fm (NEq x8) (NClosed x19) = false + | equal_fm (NClosed x19) (NEq x8) = false + | equal_fm (NEq x8) (Closed x18) = false + | equal_fm (Closed x18) (NEq x8) = false + | equal_fm (NEq x8) (A x17) = false + | equal_fm (A x17) (NEq x8) = false + | equal_fm (NEq x8) (E x16) = false + | equal_fm (E x16) (NEq x8) = false + | equal_fm (NEq x8) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (NEq x8) = false + | equal_fm (NEq x8) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (NEq x8) = false + | equal_fm (NEq x8) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (NEq x8) = false + | equal_fm (NEq x8) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (NEq x8) = false + | equal_fm (NEq x8) (NOT x11) = false + | equal_fm (NOT x11) (NEq x8) = false + | equal_fm (NEq x8) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (NEq x8) = false + | equal_fm (NEq x8) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (NEq x8) = false + | equal_fm (Eq x7) (NClosed x19) = false + | equal_fm (NClosed x19) (Eq x7) = false + | equal_fm (Eq x7) (Closed x18) = false + | equal_fm (Closed x18) (Eq x7) = false + | equal_fm (Eq x7) (A x17) = false + | equal_fm (A x17) (Eq x7) = false + | equal_fm (Eq x7) (E x16) = false + | equal_fm (E x16) (Eq x7) = false + | equal_fm (Eq x7) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Eq x7) = false + | equal_fm (Eq x7) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Eq x7) = false + | equal_fm (Eq x7) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Eq x7) = false + | equal_fm (Eq x7) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Eq x7) = false + | equal_fm (Eq x7) (NOT x11) = false + | equal_fm (NOT x11) (Eq x7) = false + | equal_fm (Eq x7) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Eq x7) = false + | equal_fm (Eq x7) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Eq x7) = false + | equal_fm (Eq x7) (NEq x8) = false + | equal_fm (NEq x8) (Eq x7) = false + | equal_fm (Ge x6) (NClosed x19) = false + | equal_fm (NClosed x19) (Ge x6) = false + | equal_fm (Ge x6) (Closed x18) = false + | equal_fm (Closed x18) (Ge x6) = false + | equal_fm (Ge x6) (A x17) = false + | equal_fm (A x17) (Ge x6) = false + | equal_fm (Ge x6) (E x16) = false + | equal_fm (E x16) (Ge x6) = false + | equal_fm (Ge x6) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Ge x6) = false + | equal_fm (Ge x6) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Ge x6) = false + | equal_fm (Ge x6) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Ge x6) = false + | equal_fm (Ge x6) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Ge x6) = false + | equal_fm (Ge x6) (NOT x11) = false + | equal_fm (NOT x11) (Ge x6) = false + | equal_fm (Ge x6) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Ge x6) = false + | equal_fm (Ge x6) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Ge x6) = false + | equal_fm (Ge x6) (NEq x8) = false + | equal_fm (NEq x8) (Ge x6) = false + | equal_fm (Ge x6) (Eq x7) = false + | equal_fm (Eq x7) (Ge x6) = false + | equal_fm (Gt x5) (NClosed x19) = false + | equal_fm (NClosed x19) (Gt x5) = false + | equal_fm (Gt x5) (Closed x18) = false + | equal_fm (Closed x18) (Gt x5) = false + | equal_fm (Gt x5) (A x17) = false + | equal_fm (A x17) (Gt x5) = false + | equal_fm (Gt x5) (E x16) = false + | equal_fm (E x16) (Gt x5) = false + | equal_fm (Gt x5) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Gt x5) = false + | equal_fm (Gt x5) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Gt x5) = false + | equal_fm (Gt x5) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Gt x5) = false + | equal_fm (Gt x5) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Gt x5) = false + | equal_fm (Gt x5) (NOT x11) = false + | equal_fm (NOT x11) (Gt x5) = false + | equal_fm (Gt x5) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Gt x5) = false + | equal_fm (Gt x5) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Gt x5) = false + | equal_fm (Gt x5) (NEq x8) = false + | equal_fm (NEq x8) (Gt x5) = false + | equal_fm (Gt x5) (Eq x7) = false + | equal_fm (Eq x7) (Gt x5) = false + | equal_fm (Gt x5) (Ge x6) = false + | equal_fm (Ge x6) (Gt x5) = false + | equal_fm (Le x4) (NClosed x19) = false + | equal_fm (NClosed x19) (Le x4) = false + | equal_fm (Le x4) (Closed x18) = false + | equal_fm (Closed x18) (Le x4) = false + | equal_fm (Le x4) (A x17) = false + | equal_fm (A x17) (Le x4) = false + | equal_fm (Le x4) (E x16) = false + | equal_fm (E x16) (Le x4) = false + | equal_fm (Le x4) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Le x4) = false + | equal_fm (Le x4) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Le x4) = false + | equal_fm (Le x4) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Le x4) = false + | equal_fm (Le x4) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Le x4) = false + | equal_fm (Le x4) (NOT x11) = false + | equal_fm (NOT x11) (Le x4) = false + | equal_fm (Le x4) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Le x4) = false + | equal_fm (Le x4) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Le x4) = false + | equal_fm (Le x4) (NEq x8) = false + | equal_fm (NEq x8) (Le x4) = false + | equal_fm (Le x4) (Eq x7) = false + | equal_fm (Eq x7) (Le x4) = false + | equal_fm (Le x4) (Ge x6) = false + | equal_fm (Ge x6) (Le x4) = false + | equal_fm (Le x4) (Gt x5) = false + | equal_fm (Gt x5) (Le x4) = false + | equal_fm (Lt x3) (NClosed x19) = false + | equal_fm (NClosed x19) (Lt x3) = false + | equal_fm (Lt x3) (Closed x18) = false + | equal_fm (Closed x18) (Lt x3) = false + | equal_fm (Lt x3) (A x17) = false + | equal_fm (A x17) (Lt x3) = false + | equal_fm (Lt x3) (E x16) = false + | equal_fm (E x16) (Lt x3) = false + | equal_fm (Lt x3) (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) (Lt x3) = false + | equal_fm (Lt x3) (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) (Lt x3) = false + | equal_fm (Lt x3) (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) (Lt x3) = false + | equal_fm (Lt x3) (And (x121, x122)) = false + | equal_fm (And (x121, x122)) (Lt x3) = false + | equal_fm (Lt x3) (NOT x11) = false + | equal_fm (NOT x11) (Lt x3) = false + | equal_fm (Lt x3) (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) (Lt x3) = false + | equal_fm (Lt x3) (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) (Lt x3) = false + | equal_fm (Lt x3) (NEq x8) = false + | equal_fm (NEq x8) (Lt x3) = false + | equal_fm (Lt x3) (Eq x7) = false + | equal_fm (Eq x7) (Lt x3) = false + | equal_fm (Lt x3) (Ge x6) = false + | equal_fm (Ge x6) (Lt x3) = false + | equal_fm (Lt x3) (Gt x5) = false + | equal_fm (Gt x5) (Lt x3) = false + | equal_fm (Lt x3) (Le x4) = false + | equal_fm (Le x4) (Lt x3) = false + | equal_fm F (NClosed x19) = false + | equal_fm (NClosed x19) F = false + | equal_fm F (Closed x18) = false + | equal_fm (Closed x18) F = false + | equal_fm F (A x17) = false + | equal_fm (A x17) F = false + | equal_fm F (E x16) = false + | equal_fm (E x16) F = false + | equal_fm F (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) F = false + | equal_fm F (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) F = false + | equal_fm F (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) F = false + | equal_fm F (And (x121, x122)) = false + | equal_fm (And (x121, x122)) F = false + | equal_fm F (NOT x11) = false + | equal_fm (NOT x11) F = false + | equal_fm F (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) F = false + | equal_fm F (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) F = false + | equal_fm F (NEq x8) = false + | equal_fm (NEq x8) F = false + | equal_fm F (Eq x7) = false + | equal_fm (Eq x7) F = false + | equal_fm F (Ge x6) = false + | equal_fm (Ge x6) F = false + | equal_fm F (Gt x5) = false + | equal_fm (Gt x5) F = false + | equal_fm F (Le x4) = false + | equal_fm (Le x4) F = false + | equal_fm F (Lt x3) = false + | equal_fm (Lt x3) F = false + | equal_fm T (NClosed x19) = false + | equal_fm (NClosed x19) T = false + | equal_fm T (Closed x18) = false + | equal_fm (Closed x18) T = false + | equal_fm T (A x17) = false + | equal_fm (A x17) T = false + | equal_fm T (E x16) = false + | equal_fm (E x16) T = false + | equal_fm T (Iff (x151, x152)) = false + | equal_fm (Iff (x151, x152)) T = false + | equal_fm T (Imp (x141, x142)) = false + | equal_fm (Imp (x141, x142)) T = false + | equal_fm T (Or (x131, x132)) = false + | equal_fm (Or (x131, x132)) T = false + | equal_fm T (And (x121, x122)) = false + | equal_fm (And (x121, x122)) T = false + | equal_fm T (NOT x11) = false + | equal_fm (NOT x11) T = false + | equal_fm T (NDvd (x101, x102)) = false + | equal_fm (NDvd (x101, x102)) T = false + | equal_fm T (Dvd (x91, x92)) = false + | equal_fm (Dvd (x91, x92)) T = false + | equal_fm T (NEq x8) = false + | equal_fm (NEq x8) T = false + | equal_fm T (Eq x7) = false + | equal_fm (Eq x7) T = false + | equal_fm T (Ge x6) = false + | equal_fm (Ge x6) T = false + | equal_fm T (Gt x5) = false + | equal_fm (Gt x5) T = false + | equal_fm T (Le x4) = false + | equal_fm (Le x4) T = false + | equal_fm T (Lt x3) = false + | equal_fm (Lt x3) T = false | equal_fm T F = false | equal_fm F T = false - | equal_fm (NClosed nata) (NClosed nat) = equal_nat nata nat - | equal_fm (Closed nata) (Closed nat) = equal_nat nata nat - | equal_fm (A fma) (A fm) = equal_fm fma fm - | equal_fm (E fma) (E fm) = equal_fm fma fm - | equal_fm (Iff (fm1a, fm2a)) (Iff (fm1, fm2)) = - equal_fm fm1a fm1 andalso equal_fm fm2a fm2 - | equal_fm (Imp (fm1a, fm2a)) (Imp (fm1, fm2)) = - equal_fm fm1a fm1 andalso equal_fm fm2a fm2 - | equal_fm (Or (fm1a, fm2a)) (Or (fm1, fm2)) = - equal_fm fm1a fm1 andalso equal_fm fm2a fm2 - | equal_fm (And (fm1a, fm2a)) (And (fm1, fm2)) = - equal_fm fm1a fm1 andalso equal_fm fm2a fm2 - | equal_fm (Not fma) (Not fm) = equal_fm fma fm - | equal_fm (NDvd (intaa, numa)) (NDvd (inta, num)) = - equal_inta intaa inta andalso equal_numa numa num - | equal_fm (Dvd (intaa, numa)) (Dvd (inta, num)) = - equal_inta intaa inta andalso equal_numa numa num - | equal_fm (NEq numa) (NEq num) = equal_numa numa num - | equal_fm (Eq numa) (Eq num) = equal_numa numa num - | equal_fm (Ge numa) (Ge num) = equal_numa numa num - | equal_fm (Gt numa) (Gt num) = equal_numa numa num - | equal_fm (Le numa) (Le num) = equal_numa numa num - | equal_fm (Lt numa) (Lt num) = equal_numa numa num + | equal_fm (NClosed x19) (NClosed y19) = equal_nat x19 y19 + | equal_fm (Closed x18) (Closed y18) = equal_nat x18 y18 + | equal_fm (A x17) (A y17) = equal_fm x17 y17 + | equal_fm (E x16) (E y16) = equal_fm x16 y16 + | equal_fm (Iff (x151, x152)) (Iff (y151, y152)) = + equal_fm x151 y151 andalso equal_fm x152 y152 + | equal_fm (Imp (x141, x142)) (Imp (y141, y142)) = + equal_fm x141 y141 andalso equal_fm x142 y142 + | equal_fm (Or (x131, x132)) (Or (y131, y132)) = + equal_fm x131 y131 andalso equal_fm x132 y132 + | equal_fm (And (x121, x122)) (And (y121, y122)) = + equal_fm x121 y121 andalso equal_fm x122 y122 + | equal_fm (NOT x11) (NOT y11) = equal_fm x11 y11 + | equal_fm (NDvd (x101, x102)) (NDvd (y101, y102)) = + equal_inta x101 y101 andalso equal_numa x102 y102 + | equal_fm (Dvd (x91, x92)) (Dvd (y91, y92)) = + equal_inta x91 y91 andalso equal_numa x92 y92 + | equal_fm (NEq x8) (NEq y8) = equal_numa x8 y8 + | equal_fm (Eq x7) (Eq y7) = equal_numa x7 y7 + | equal_fm (Ge x6) (Ge y6) = equal_numa x6 y6 + | equal_fm (Gt x5) (Gt y5) = equal_numa x5 y5 + | equal_fm (Le x4) (Le y4) = equal_numa x4 y4 + | equal_fm (Lt x3) (Lt y3) = equal_numa x3 y3 | equal_fm F F = true | equal_fm T T = true; @@ -930,7 +1014,7 @@ | Le _ => Or (f p, q) | Gt _ => Or (f p, q) | Ge _ => Or (f p, q) | Eq _ => Or (f p, q) | NEq _ => Or (f p, q) | Dvd (_, _) => Or (f p, q) - | NDvd (_, _) => Or (f p, q) | Not _ => Or (f p, q) + | NDvd (_, _) => Or (f p, q) | NOT _ => Or (f p, q) | And (_, _) => Or (f p, q) | Or (_, _) => Or (f p, q) | Imp (_, _) => Or (f p, q) | Iff (_, _) => Or (f p, q) | E _ => Or (f p, q) | A _ => Or (f p, q) @@ -943,9 +1027,9 @@ fun max A_ a b = (if less_eq A_ a b then b else a); fun minus_nat m n = - Nat (max ord_integer 0 (integer_of_nat m - integer_of_nat n)); + Nat (max ord_integer (0 : IntInf.int) (integer_of_nat m - integer_of_nat n)); -val zero_nat : nat = Nat 0; +val zero_nat : nat = Nat (0 : IntInf.int); fun minusinf (And (p, q)) = And (minusinf p, minusinf q) | minusinf (Or (p, q)) = Or (minusinf p, minusinf q) @@ -989,34 +1073,34 @@ | minusinf (NEq (Mul (gy, gz))) = NEq (Mul (gy, gz)) | minusinf (Dvd (aa, ab)) = Dvd (aa, ab) | minusinf (NDvd (ac, ad)) = NDvd (ac, ad) - | minusinf (Not ae) = Not ae + | minusinf (NOT ae) = NOT ae | minusinf (Imp (aj, ak)) = Imp (aj, ak) | minusinf (Iff (al, am)) = Iff (al, am) | minusinf (E an) = E an | minusinf (A ao) = A ao | minusinf (Closed ap) = Closed ap | minusinf (NClosed aq) = NClosed aq - | minusinf (Lt (Cn (cm, c, e))) = + | minusinf (Lt (CN (cm, c, e))) = (if equal_nat cm zero_nat then T - else Lt (Cn (suc (minus_nat cm one_nat), c, e))) - | minusinf (Le (Cn (dm, c, e))) = + else Lt (CN (suc (minus_nat cm one_nat), c, e))) + | minusinf (Le (CN (dm, c, e))) = (if equal_nat dm zero_nat then T - else Le (Cn (suc (minus_nat dm one_nat), c, e))) - | minusinf (Gt (Cn (em, c, e))) = + else Le (CN (suc (minus_nat dm one_nat), c, e))) + | minusinf (Gt (CN (em, c, e))) = (if equal_nat em zero_nat then F - else Gt (Cn (suc (minus_nat em one_nat), c, e))) - | minusinf (Ge (Cn (fm, c, e))) = + else Gt (CN (suc (minus_nat em one_nat), c, e))) + | minusinf (Ge (CN (fm, c, e))) = (if equal_nat fm zero_nat then F - else Ge (Cn (suc (minus_nat fm one_nat), c, e))) - | minusinf (Eq (Cn (gm, c, e))) = + else Ge (CN (suc (minus_nat fm one_nat), c, e))) + | minusinf (Eq (CN (gm, c, e))) = (if equal_nat gm zero_nat then F - else Eq (Cn (suc (minus_nat gm one_nat), c, e))) - | minusinf (NEq (Cn (hm, c, e))) = + else Eq (CN (suc (minus_nat gm one_nat), c, e))) + | minusinf (NEq (CN (hm, c, e))) = (if equal_nat hm zero_nat then T - else NEq (Cn (suc (minus_nat hm one_nat), c, e))); + else NEq (CN (suc (minus_nat hm one_nat), c, e))); -fun map fi [] = [] - | map fi (x21a :: x22a) = fi x21a :: map fi x22a; +fun map f [] = [] + | map f (x21 :: x22) = f x21 :: map f x22; fun numsubst0 t (C c) = C c | numsubst0 t (Bound n) = (if equal_nat n zero_nat then t else Bound n) @@ -1024,9 +1108,9 @@ | numsubst0 t (Add (a, b)) = Add (numsubst0 t a, numsubst0 t b) | numsubst0 t (Sub (a, b)) = Sub (numsubst0 t a, numsubst0 t b) | numsubst0 t (Mul (i, a)) = Mul (i, numsubst0 t a) - | numsubst0 t (Cn (v, i, a)) = + | numsubst0 t (CN (v, i, a)) = (if equal_nat v zero_nat then Add (Mul (i, t), numsubst0 t a) - else Cn (suc (minus_nat v one_nat), i, numsubst0 t a)); + else CN (suc (minus_nat v one_nat), i, numsubst0 t a)); fun subst0 t T = T | subst0 t F = F @@ -1038,7 +1122,7 @@ | subst0 t (NEq a) = NEq (numsubst0 t a) | subst0 t (Dvd (i, a)) = Dvd (i, numsubst0 t a) | subst0 t (NDvd (i, a)) = NDvd (i, numsubst0 t a) - | subst0 t (Not p) = Not (subst0 t p) + | subst0 t (NOT p) = NOT (subst0 t p) | subst0 t (And (p, q)) = And (subst0 t p, subst0 t q) | subst0 t (Or (p, q)) = Or (subst0 t p, subst0 t q) | subst0 t (Imp (p, q)) = Imp (subst0 t p, subst0 t q) @@ -1059,11 +1143,12 @@ (zero ((zero_mult_zero o mult_zero_semiring_0 o semiring_0_semiring_1 o semiring_1_comm_semiring_1 o comm_semiring_1_comm_semiring_1_cancel o - comm_semiring_1_cancel_semiring_div) + comm_semiring_1_cancel_semidom o semidom_semidom_divide o + semidom_divide_algebraic_semidom o algebraic_semidom_semiring_div) A1_)); fun nummul i (C j) = C (times_inta i j) - | nummul i (Cn (n, c, t)) = Cn (n, times_inta c i, nummul i t) + | nummul i (CN (n, c, t)) = CN (n, times_inta c i, nummul i t) | nummul i (Bound v) = Mul (i, Bound v) | nummul i (Neg v) = Mul (i, Neg v) | nummul i (Add (v, va)) = Mul (i, Add (v, va)) @@ -1074,35 +1159,35 @@ fun less_eq_nat m n = integer_of_nat m <= integer_of_nat n; -fun numadd (Cn (n1, c1, r1), Cn (n2, c2, r2)) = +fun numadd (CN (n1, c1, r1), CN (n2, c2, r2)) = (if equal_nat n1 n2 then let val c = plus_inta c1 c2; in (if equal_inta c zero_inta then numadd (r1, r2) - else Cn (n1, c, numadd (r1, r2))) + else CN (n1, c, numadd (r1, r2))) end else (if less_eq_nat n1 n2 - then Cn (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2))) - else Cn (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2)))) - | numadd (Cn (n1, c1, r1), C dd) = Cn (n1, c1, numadd (r1, C dd)) - | numadd (Cn (n1, c1, r1), Bound de) = Cn (n1, c1, numadd (r1, Bound de)) - | numadd (Cn (n1, c1, r1), Neg di) = Cn (n1, c1, numadd (r1, Neg di)) - | numadd (Cn (n1, c1, r1), Add (dj, dk)) = - Cn (n1, c1, numadd (r1, Add (dj, dk))) - | numadd (Cn (n1, c1, r1), Sub (dl, dm)) = - Cn (n1, c1, numadd (r1, Sub (dl, dm))) - | numadd (Cn (n1, c1, r1), Mul (dn, doa)) = - Cn (n1, c1, numadd (r1, Mul (dn, doa))) - | numadd (C w, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (C w, r2)) - | numadd (Bound x, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Bound x, r2)) - | numadd (Neg ac, Cn (n2, c2, r2)) = Cn (n2, c2, numadd (Neg ac, r2)) - | numadd (Add (ad, ae), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Add (ad, ae), r2)) - | numadd (Sub (af, ag), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Sub (af, ag), r2)) - | numadd (Mul (ah, ai), Cn (n2, c2, r2)) = - Cn (n2, c2, numadd (Mul (ah, ai), r2)) + then CN (n1, c1, numadd (r1, Add (Mul (c2, Bound n2), r2))) + else CN (n2, c2, numadd (Add (Mul (c1, Bound n1), r1), r2)))) + | numadd (CN (n1, c1, r1), C dd) = CN (n1, c1, numadd (r1, C dd)) + | numadd (CN (n1, c1, r1), Bound de) = CN (n1, c1, numadd (r1, Bound de)) + | numadd (CN (n1, c1, r1), Neg di) = CN (n1, c1, numadd (r1, Neg di)) + | numadd (CN (n1, c1, r1), Add (dj, dk)) = + CN (n1, c1, numadd (r1, Add (dj, dk))) + | numadd (CN (n1, c1, r1), Sub (dl, dm)) = + CN (n1, c1, numadd (r1, Sub (dl, dm))) + | numadd (CN (n1, c1, r1), Mul (dn, doa)) = + CN (n1, c1, numadd (r1, Mul (dn, doa))) + | numadd (C w, CN (n2, c2, r2)) = CN (n2, c2, numadd (C w, r2)) + | numadd (Bound x, CN (n2, c2, r2)) = CN (n2, c2, numadd (Bound x, r2)) + | numadd (Neg ac, CN (n2, c2, r2)) = CN (n2, c2, numadd (Neg ac, r2)) + | numadd (Add (ad, ae), CN (n2, c2, r2)) = + CN (n2, c2, numadd (Add (ad, ae), r2)) + | numadd (Sub (af, ag), CN (n2, c2, r2)) = + CN (n2, c2, numadd (Sub (af, ag), r2)) + | numadd (Mul (ah, ai), CN (n2, c2, r2)) = + CN (n2, c2, numadd (Mul (ah, ai), r2)) | numadd (C b1, C b2) = C (plus_inta b1 b2) | numadd (C aj, Bound bi) = Add (C aj, Bound bi) | numadd (C aj, Neg bm) = Add (C aj, Neg bm) @@ -1143,13 +1228,13 @@ fun numsub s t = (if equal_numa s t then C zero_inta else numadd (s, numneg t)); fun simpnum (C j) = C j - | simpnum (Bound n) = Cn (n, Int_of_integer (1 : IntInf.int), C zero_inta) + | simpnum (Bound n) = CN (n, Int_of_integer (1 : IntInf.int), C zero_inta) | simpnum (Neg t) = numneg (simpnum t) | simpnum (Add (t, s)) = numadd (simpnum t, simpnum s) | simpnum (Sub (t, s)) = numsub (simpnum t) (simpnum s) | simpnum (Mul (i, t)) = (if equal_inta i zero_inta then C zero_inta else nummul i (simpnum t)) - | simpnum (Cn (v, va, vb)) = Cn (v, va, vb); + | simpnum (CN (v, va, vb)) = CN (v, va, vb); fun disj p q = (if equal_fm p T orelse equal_fm q T then T @@ -1160,25 +1245,25 @@ else (if equal_fm p T then q else (if equal_fm q T then p else And (p, q)))); -fun nota (Not p) = p +fun nota (NOT p) = p | nota T = F | nota F = T - | nota (Lt v) = Not (Lt v) - | nota (Le v) = Not (Le v) - | nota (Gt v) = Not (Gt v) - | nota (Ge v) = Not (Ge v) - | nota (Eq v) = Not (Eq v) - | nota (NEq v) = Not (NEq v) - | nota (Dvd (v, va)) = Not (Dvd (v, va)) - | nota (NDvd (v, va)) = Not (NDvd (v, va)) - | nota (And (v, va)) = Not (And (v, va)) - | nota (Or (v, va)) = Not (Or (v, va)) - | nota (Imp (v, va)) = Not (Imp (v, va)) - | nota (Iff (v, va)) = Not (Iff (v, va)) - | nota (E v) = Not (E v) - | nota (A v) = Not (A v) - | nota (Closed v) = Not (Closed v) - | nota (NClosed v) = Not (NClosed v); + | nota (Lt v) = NOT (Lt v) + | nota (Le v) = NOT (Le v) + | nota (Gt v) = NOT (Gt v) + | nota (Ge v) = NOT (Ge v) + | nota (Eq v) = NOT (Eq v) + | nota (NEq v) = NOT (NEq v) + | nota (Dvd (v, va)) = NOT (Dvd (v, va)) + | nota (NDvd (v, va)) = NOT (NDvd (v, va)) + | nota (And (v, va)) = NOT (And (v, va)) + | nota (Or (v, va)) = NOT (Or (v, va)) + | nota (Imp (v, va)) = NOT (Imp (v, va)) + | nota (Iff (v, va)) = NOT (Iff (v, va)) + | nota (E v) = NOT (E v) + | nota (A v) = NOT (A v) + | nota (Closed v) = NOT (Closed v) + | nota (NClosed v) = NOT (NClosed v); fun imp p q = (if equal_fm p F orelse equal_fm q T then T @@ -1198,13 +1283,13 @@ | simpfm (Or (p, q)) = disj (simpfm p) (simpfm q) | simpfm (Imp (p, q)) = imp (simpfm p) (simpfm q) | simpfm (Iff (p, q)) = iff (simpfm p) (simpfm q) - | simpfm (Not p) = nota (simpfm p) + | simpfm (NOT p) = nota (simpfm p) | simpfm (Lt a) = let val aa = simpnum a; in (case aa of C v => (if less_int v zero_inta then T else F) - | Bound _ => Lt aa | Cn (_, _, _) => Lt aa | Neg _ => Lt aa + | Bound _ => Lt aa | CN (_, _, _) => Lt aa | Neg _ => Lt aa | Add (_, _) => Lt aa | Sub (_, _) => Lt aa | Mul (_, _) => Lt aa) end | simpfm (Le a) = @@ -1212,7 +1297,7 @@ val aa = simpnum a; in (case aa of C v => (if less_eq_int v zero_inta then T else F) - | Bound _ => Le aa | Cn (_, _, _) => Le aa | Neg _ => Le aa + | Bound _ => Le aa | CN (_, _, _) => Le aa | Neg _ => Le aa | Add (_, _) => Le aa | Sub (_, _) => Le aa | Mul (_, _) => Le aa) end | simpfm (Gt a) = @@ -1220,7 +1305,7 @@ val aa = simpnum a; in (case aa of C v => (if less_int zero_inta v then T else F) - | Bound _ => Gt aa | Cn (_, _, _) => Gt aa | Neg _ => Gt aa + | Bound _ => Gt aa | CN (_, _, _) => Gt aa | Neg _ => Gt aa | Add (_, _) => Gt aa | Sub (_, _) => Gt aa | Mul (_, _) => Gt aa) end | simpfm (Ge a) = @@ -1228,7 +1313,7 @@ val aa = simpnum a; in (case aa of C v => (if less_eq_int zero_inta v then T else F) - | Bound _ => Ge aa | Cn (_, _, _) => Ge aa | Neg _ => Ge aa + | Bound _ => Ge aa | CN (_, _, _) => Ge aa | Neg _ => Ge aa | Add (_, _) => Ge aa | Sub (_, _) => Ge aa | Mul (_, _) => Ge aa) end | simpfm (Eq a) = @@ -1236,7 +1321,7 @@ val aa = simpnum a; in (case aa of C v => (if equal_inta v zero_inta then T else F) - | Bound _ => Eq aa | Cn (_, _, _) => Eq aa | Neg _ => Eq aa + | Bound _ => Eq aa | CN (_, _, _) => Eq aa | Neg _ => Eq aa | Add (_, _) => Eq aa | Sub (_, _) => Eq aa | Mul (_, _) => Eq aa) end | simpfm (NEq a) = @@ -1244,7 +1329,7 @@ val aa = simpnum a; in (case aa of C v => (if not (equal_inta v zero_inta) then T else F) - | Bound _ => NEq aa | Cn (_, _, _) => NEq aa | Neg _ => NEq aa + | Bound _ => NEq aa | CN (_, _, _) => NEq aa | Neg _ => NEq aa | Add (_, _) => NEq aa | Sub (_, _) => NEq aa | Mul (_, _) => NEq aa) end | simpfm (Dvd (i, a)) = @@ -1256,7 +1341,7 @@ (case aa of C v => (if dvd (semiring_div_int, equal_int) i v then T else F) - | Bound _ => Dvd (i, aa) | Cn (_, _, _) => Dvd (i, aa) + | Bound _ => Dvd (i, aa) | CN (_, _, _) => Dvd (i, aa) | Neg _ => Dvd (i, aa) | Add (_, _) => Dvd (i, aa) | Sub (_, _) => Dvd (i, aa) | Mul (_, _) => Dvd (i, aa)) end)) @@ -1270,7 +1355,7 @@ of C v => (if not (dvd (semiring_div_int, equal_int) i v) then T else F) - | Bound _ => NDvd (i, aa) | Cn (_, _, _) => NDvd (i, aa) + | Bound _ => NDvd (i, aa) | CN (_, _, _) => NDvd (i, aa) | Neg _ => NDvd (i, aa) | Add (_, _) => NDvd (i, aa) | Sub (_, _) => NDvd (i, aa) | Mul (_, _) => NDvd (i, aa)) end)) @@ -1338,70 +1423,71 @@ | a_beta (NDvd (ac, Add (iu, iv))) = (fn _ => NDvd (ac, Add (iu, iv))) | a_beta (NDvd (ac, Sub (iw, ix))) = (fn _ => NDvd (ac, Sub (iw, ix))) | a_beta (NDvd (ac, Mul (iy, iz))) = (fn _ => NDvd (ac, Mul (iy, iz))) - | a_beta (Not ae) = (fn _ => Not ae) + | a_beta (NOT ae) = (fn _ => NOT ae) | a_beta (Imp (aj, ak)) = (fn _ => Imp (aj, ak)) | a_beta (Iff (al, am)) = (fn _ => Iff (al, am)) | a_beta (E an) = (fn _ => E an) | a_beta (A ao) = (fn _ => A ao) | a_beta (Closed ap) = (fn _ => Closed ap) | a_beta (NClosed aq) = (fn _ => NClosed aq) - | a_beta (Lt (Cn (cm, c, e))) = + | a_beta (Lt (CN (cm, c, e))) = (if equal_nat cm zero_nat then (fn k => - Lt (Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Lt (Cn (suc (minus_nat cm one_nat), c, e)))) - | a_beta (Le (Cn (dm, c, e))) = + Lt (CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => Lt (CN (suc (minus_nat cm one_nat), c, e)))) + | a_beta (Le (CN (dm, c, e))) = (if equal_nat dm zero_nat then (fn k => - Le (Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Le (Cn (suc (minus_nat dm one_nat), c, e)))) - | a_beta (Gt (Cn (em, c, e))) = + Le (CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => Le (CN (suc (minus_nat dm one_nat), c, e)))) + | a_beta (Gt (CN (em, c, e))) = (if equal_nat em zero_nat then (fn k => - Gt (Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Gt (Cn (suc (minus_nat em one_nat), c, e)))) - | a_beta (Ge (Cn (fm, c, e))) = + Gt (CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => Gt (CN (suc (minus_nat em one_nat), c, e)))) + | a_beta (Ge (CN (fm, c, e))) = (if equal_nat fm zero_nat then (fn k => - Ge (Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Ge (Cn (suc (minus_nat fm one_nat), c, e)))) - | a_beta (Eq (Cn (gm, c, e))) = + Ge (CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => Ge (CN (suc (minus_nat fm one_nat), c, e)))) + | a_beta (Eq (CN (gm, c, e))) = (if equal_nat gm zero_nat then (fn k => - Eq (Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Eq (Cn (suc (minus_nat gm one_nat), c, e)))) - | a_beta (NEq (Cn (hm, c, e))) = + Eq (CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => Eq (CN (suc (minus_nat gm one_nat), c, e)))) + | a_beta (NEq (CN (hm, c, e))) = (if equal_nat hm zero_nat then (fn k => - NEq (Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => NEq (Cn (suc (minus_nat hm one_nat), c, e)))) - | a_beta (Dvd (i, Cn (im, c, e))) = + NEq (CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => NEq (CN (suc (minus_nat hm one_nat), c, e)))) + | a_beta (Dvd (i, CN (im, c, e))) = (if equal_nat im zero_nat then (fn k => - Dvd (times_inta (div_inta k c) i, - Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => Dvd (i, Cn (suc (minus_nat im one_nat), c, e)))) - | a_beta (NDvd (i, Cn (jm, c, e))) = + Dvd (times_inta (divide_inta k c) i, + CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => Dvd (i, CN (suc (minus_nat im one_nat), c, e)))) + | a_beta (NDvd (i, CN (jm, c, e))) = (if equal_nat jm zero_nat then (fn k => - NDvd (times_inta (div_inta k c) i, - Cn (zero_nat, Int_of_integer (1 : IntInf.int), - Mul (div_inta k c, e)))) - else (fn _ => NDvd (i, Cn (suc (minus_nat jm one_nat), c, e)))); + NDvd (times_inta (divide_inta k c) i, + CN (zero_nat, Int_of_integer (1 : IntInf.int), + Mul (divide_inta k c, e)))) + else (fn _ => NDvd (i, CN (suc (minus_nat jm one_nat), c, e)))); fun gcd_int k l = abs_int (if equal_inta l zero_inta then k else gcd_int l (mod_int (abs_int k) (abs_int l))); -fun lcm_int a b = div_inta (times_inta (abs_int a) (abs_int b)) (gcd_int a b); +fun lcm_int a b = + divide_inta (times_inta (abs_int a) (abs_int b)) (gcd_int a b); fun delta (And (p, q)) = lcm_int (delta p) (delta q) | delta (Or (p, q)) = lcm_int (delta p) (delta q) @@ -1425,16 +1511,16 @@ | delta (NDvd (ac, Add (cu, cv))) = Int_of_integer (1 : IntInf.int) | delta (NDvd (ac, Sub (cw, cx))) = Int_of_integer (1 : IntInf.int) | delta (NDvd (ac, Mul (cy, cz))) = Int_of_integer (1 : IntInf.int) - | delta (Not ae) = Int_of_integer (1 : IntInf.int) + | delta (NOT ae) = Int_of_integer (1 : IntInf.int) | delta (Imp (aj, ak)) = Int_of_integer (1 : IntInf.int) | delta (Iff (al, am)) = Int_of_integer (1 : IntInf.int) | delta (E an) = Int_of_integer (1 : IntInf.int) | delta (A ao) = Int_of_integer (1 : IntInf.int) | delta (Closed ap) = Int_of_integer (1 : IntInf.int) | delta (NClosed aq) = Int_of_integer (1 : IntInf.int) - | delta (Dvd (i, Cn (cm, c, e))) = + | delta (Dvd (i, CN (cm, c, e))) = (if equal_nat cm zero_nat then i else Int_of_integer (1 : IntInf.int)) - | delta (NDvd (i, Cn (dm, c, e))) = + | delta (NDvd (i, CN (dm, c, e))) = (if equal_nat dm zero_nat then i else Int_of_integer (1 : IntInf.int)); fun alpha (And (p, q)) = alpha p @ alpha q @@ -1479,23 +1565,23 @@ | alpha (NEq (Mul (gy, gz))) = [] | alpha (Dvd (aa, ab)) = [] | alpha (NDvd (ac, ad)) = [] - | alpha (Not ae) = [] + | alpha (NOT ae) = [] | alpha (Imp (aj, ak)) = [] | alpha (Iff (al, am)) = [] | alpha (E an) = [] | alpha (A ao) = [] | alpha (Closed ap) = [] | alpha (NClosed aq) = [] - | alpha (Lt (Cn (cm, c, e))) = (if equal_nat cm zero_nat then [e] else []) - | alpha (Le (Cn (dm, c, e))) = + | alpha (Lt (CN (cm, c, e))) = (if equal_nat cm zero_nat then [e] else []) + | alpha (Le (CN (dm, c, e))) = (if equal_nat dm zero_nat then [Add (C (uminus_int (Int_of_integer (1 : IntInf.int))), e)] else []) - | alpha (Gt (Cn (em, c, e))) = (if equal_nat em zero_nat then [] else []) - | alpha (Ge (Cn (fm, c, e))) = (if equal_nat fm zero_nat then [] else []) - | alpha (Eq (Cn (gm, c, e))) = + | alpha (Gt (CN (em, c, e))) = (if equal_nat em zero_nat then [] else []) + | alpha (Ge (CN (fm, c, e))) = (if equal_nat fm zero_nat then [] else []) + | alpha (Eq (CN (gm, c, e))) = (if equal_nat gm zero_nat then [Add (C (uminus_int (Int_of_integer (1 : IntInf.int))), e)] else []) - | alpha (NEq (Cn (hm, c, e))) = (if equal_nat hm zero_nat then [e] else []); + | alpha (NEq (CN (hm, c, e))) = (if equal_nat hm zero_nat then [e] else []); fun zeta (And (p, q)) = lcm_int (zeta p) (zeta q) | zeta (Or (p, q)) = lcm_int (zeta p) (zeta q) @@ -1549,28 +1635,28 @@ | zeta (NDvd (ac, Add (iu, iv))) = Int_of_integer (1 : IntInf.int) | zeta (NDvd (ac, Sub (iw, ix))) = Int_of_integer (1 : IntInf.int) | zeta (NDvd (ac, Mul (iy, iz))) = Int_of_integer (1 : IntInf.int) - | zeta (Not ae) = Int_of_integer (1 : IntInf.int) + | zeta (NOT ae) = Int_of_integer (1 : IntInf.int) | zeta (Imp (aj, ak)) = Int_of_integer (1 : IntInf.int) | zeta (Iff (al, am)) = Int_of_integer (1 : IntInf.int) | zeta (E an) = Int_of_integer (1 : IntInf.int) | zeta (A ao) = Int_of_integer (1 : IntInf.int) | zeta (Closed ap) = Int_of_integer (1 : IntInf.int) | zeta (NClosed aq) = Int_of_integer (1 : IntInf.int) - | zeta (Lt (Cn (cm, c, e))) = + | zeta (Lt (CN (cm, c, e))) = (if equal_nat cm zero_nat then c else Int_of_integer (1 : IntInf.int)) - | zeta (Le (Cn (dm, c, e))) = + | zeta (Le (CN (dm, c, e))) = (if equal_nat dm zero_nat then c else Int_of_integer (1 : IntInf.int)) - | zeta (Gt (Cn (em, c, e))) = + | zeta (Gt (CN (em, c, e))) = (if equal_nat em zero_nat then c else Int_of_integer (1 : IntInf.int)) - | zeta (Ge (Cn (fm, c, e))) = + | zeta (Ge (CN (fm, c, e))) = (if equal_nat fm zero_nat then c else Int_of_integer (1 : IntInf.int)) - | zeta (Eq (Cn (gm, c, e))) = + | zeta (Eq (CN (gm, c, e))) = (if equal_nat gm zero_nat then c else Int_of_integer (1 : IntInf.int)) - | zeta (NEq (Cn (hm, c, e))) = + | zeta (NEq (CN (hm, c, e))) = (if equal_nat hm zero_nat then c else Int_of_integer (1 : IntInf.int)) - | zeta (Dvd (i, Cn (im, c, e))) = + | zeta (Dvd (i, CN (im, c, e))) = (if equal_nat im zero_nat then c else Int_of_integer (1 : IntInf.int)) - | zeta (NDvd (i, Cn (jm, c, e))) = + | zeta (NDvd (i, CN (jm, c, e))) = (if equal_nat jm zero_nat then c else Int_of_integer (1 : IntInf.int)); fun beta (And (p, q)) = beta p @ beta q @@ -1615,23 +1701,23 @@ | beta (NEq (Mul (gy, gz))) = [] | beta (Dvd (aa, ab)) = [] | beta (NDvd (ac, ad)) = [] - | beta (Not ae) = [] + | beta (NOT ae) = [] | beta (Imp (aj, ak)) = [] | beta (Iff (al, am)) = [] | beta (E an) = [] | beta (A ao) = [] | beta (Closed ap) = [] | beta (NClosed aq) = [] - | beta (Lt (Cn (cm, c, e))) = (if equal_nat cm zero_nat then [] else []) - | beta (Le (Cn (dm, c, e))) = (if equal_nat dm zero_nat then [] else []) - | beta (Gt (Cn (em, c, e))) = (if equal_nat em zero_nat then [Neg e] else []) - | beta (Ge (Cn (fm, c, e))) = + | beta (Lt (CN (cm, c, e))) = (if equal_nat cm zero_nat then [] else []) + | beta (Le (CN (dm, c, e))) = (if equal_nat dm zero_nat then [] else []) + | beta (Gt (CN (em, c, e))) = (if equal_nat em zero_nat then [Neg e] else []) + | beta (Ge (CN (fm, c, e))) = (if equal_nat fm zero_nat then [Sub (C (uminus_int (Int_of_integer (1 : IntInf.int))), e)] else []) - | beta (Eq (Cn (gm, c, e))) = + | beta (Eq (CN (gm, c, e))) = (if equal_nat gm zero_nat then [Sub (C (uminus_int (Int_of_integer (1 : IntInf.int))), e)] else []) - | beta (NEq (Cn (hm, c, e))) = + | beta (NEq (CN (hm, c, e))) = (if equal_nat hm zero_nat then [Neg e] else []); fun mirror (And (p, q)) = And (mirror p, mirror q) @@ -1686,37 +1772,37 @@ | mirror (NDvd (ac, Add (iu, iv))) = NDvd (ac, Add (iu, iv)) | mirror (NDvd (ac, Sub (iw, ix))) = NDvd (ac, Sub (iw, ix)) | mirror (NDvd (ac, Mul (iy, iz))) = NDvd (ac, Mul (iy, iz)) - | mirror (Not ae) = Not ae + | mirror (NOT ae) = NOT ae | mirror (Imp (aj, ak)) = Imp (aj, ak) | mirror (Iff (al, am)) = Iff (al, am) | mirror (E an) = E an | mirror (A ao) = A ao | mirror (Closed ap) = Closed ap | mirror (NClosed aq) = NClosed aq - | mirror (Lt (Cn (cm, c, e))) = - (if equal_nat cm zero_nat then Gt (Cn (zero_nat, c, Neg e)) - else Lt (Cn (suc (minus_nat cm one_nat), c, e))) - | mirror (Le (Cn (dm, c, e))) = - (if equal_nat dm zero_nat then Ge (Cn (zero_nat, c, Neg e)) - else Le (Cn (suc (minus_nat dm one_nat), c, e))) - | mirror (Gt (Cn (em, c, e))) = - (if equal_nat em zero_nat then Lt (Cn (zero_nat, c, Neg e)) - else Gt (Cn (suc (minus_nat em one_nat), c, e))) - | mirror (Ge (Cn (fm, c, e))) = - (if equal_nat fm zero_nat then Le (Cn (zero_nat, c, Neg e)) - else Ge (Cn (suc (minus_nat fm one_nat), c, e))) - | mirror (Eq (Cn (gm, c, e))) = - (if equal_nat gm zero_nat then Eq (Cn (zero_nat, c, Neg e)) - else Eq (Cn (suc (minus_nat gm one_nat), c, e))) - | mirror (NEq (Cn (hm, c, e))) = - (if equal_nat hm zero_nat then NEq (Cn (zero_nat, c, Neg e)) - else NEq (Cn (suc (minus_nat hm one_nat), c, e))) - | mirror (Dvd (i, Cn (im, c, e))) = - (if equal_nat im zero_nat then Dvd (i, Cn (zero_nat, c, Neg e)) - else Dvd (i, Cn (suc (minus_nat im one_nat), c, e))) - | mirror (NDvd (i, Cn (jm, c, e))) = - (if equal_nat jm zero_nat then NDvd (i, Cn (zero_nat, c, Neg e)) - else NDvd (i, Cn (suc (minus_nat jm one_nat), c, e))); + | mirror (Lt (CN (cm, c, e))) = + (if equal_nat cm zero_nat then Gt (CN (zero_nat, c, Neg e)) + else Lt (CN (suc (minus_nat cm one_nat), c, e))) + | mirror (Le (CN (dm, c, e))) = + (if equal_nat dm zero_nat then Ge (CN (zero_nat, c, Neg e)) + else Le (CN (suc (minus_nat dm one_nat), c, e))) + | mirror (Gt (CN (em, c, e))) = + (if equal_nat em zero_nat then Lt (CN (zero_nat, c, Neg e)) + else Gt (CN (suc (minus_nat em one_nat), c, e))) + | mirror (Ge (CN (fm, c, e))) = + (if equal_nat fm zero_nat then Le (CN (zero_nat, c, Neg e)) + else Ge (CN (suc (minus_nat fm one_nat), c, e))) + | mirror (Eq (CN (gm, c, e))) = + (if equal_nat gm zero_nat then Eq (CN (zero_nat, c, Neg e)) + else Eq (CN (suc (minus_nat gm one_nat), c, e))) + | mirror (NEq (CN (hm, c, e))) = + (if equal_nat hm zero_nat then NEq (CN (zero_nat, c, Neg e)) + else NEq (CN (suc (minus_nat hm one_nat), c, e))) + | mirror (Dvd (i, CN (im, c, e))) = + (if equal_nat im zero_nat then Dvd (i, CN (zero_nat, c, Neg e)) + else Dvd (i, CN (suc (minus_nat im one_nat), c, e))) + | mirror (NDvd (i, CN (jm, c, e))) = + (if equal_nat jm zero_nat then NDvd (i, CN (zero_nat, c, Neg e)) + else NDvd (i, CN (suc (minus_nat jm one_nat), c, e))); fun member A_ [] y = false | member A_ (x :: xs) y = eq A_ x y orelse member A_ xs y; @@ -1725,97 +1811,103 @@ | remdups A_ (x :: xs) = (if member A_ xs x then remdups A_ xs else x :: remdups A_ xs); -fun minus_int k l = Int_of_integer (integer_of_int k - integer_of_int l); - fun zsplit0 (C c) = (zero_inta, C c) | zsplit0 (Bound n) = (if equal_nat n zero_nat then (Int_of_integer (1 : IntInf.int), C zero_inta) else (zero_inta, Bound n)) - | zsplit0 (Cn (n, i, a)) = + | zsplit0 (CN (n, i, a)) = let - val (ia, aa) = zsplit0 a; + val aa = zsplit0 a; + val (ia, ab) = aa; in - (if equal_nat n zero_nat then (plus_inta i ia, aa) - else (ia, Cn (n, i, aa))) + (if equal_nat n zero_nat then (plus_inta i ia, ab) + else (ia, CN (n, i, ab))) end - | zsplit0 (Neg a) = let - val (i, aa) = zsplit0 a; - in - (uminus_int i, Neg aa) - end + | zsplit0 (Neg a) = + let + val aa = zsplit0 a; + val (i, ab) = aa; + in + (uminus_int i, Neg ab) + end | zsplit0 (Add (a, b)) = let - val (ia, aa) = zsplit0 a; - val (ib, ba) = zsplit0 b; + val aa = zsplit0 a; + val (ia, ab) = aa; + val ba = zsplit0 b; + val (ib, bb) = ba; in - (plus_inta ia ib, Add (aa, ba)) + (plus_inta ia ib, Add (ab, bb)) end | zsplit0 (Sub (a, b)) = let - val (ia, aa) = zsplit0 a; - val (ib, ba) = zsplit0 b; + val aa = zsplit0 a; + val (ia, ab) = aa; + val ba = zsplit0 b; + val (ib, bb) = ba; in - (minus_int ia ib, Sub (aa, ba)) + (minus_inta ia ib, Sub (ab, bb)) end | zsplit0 (Mul (i, a)) = let - val (ia, aa) = zsplit0 a; + val aa = zsplit0 a; + val (ia, ab) = aa; in - (times_inta i ia, Mul (i, aa)) + (times_inta i ia, Mul (i, ab)) end; fun zlfm (And (p, q)) = And (zlfm p, zlfm q) | zlfm (Or (p, q)) = Or (zlfm p, zlfm q) - | zlfm (Imp (p, q)) = Or (zlfm (Not p), zlfm q) + | zlfm (Imp (p, q)) = Or (zlfm (NOT p), zlfm q) | zlfm (Iff (p, q)) = - Or (And (zlfm p, zlfm q), And (zlfm (Not p), zlfm (Not q))) + Or (And (zlfm p, zlfm q), And (zlfm (NOT p), zlfm (NOT q))) | zlfm (Lt a) = let val (c, r) = zsplit0 a; in (if equal_inta c zero_inta then Lt r - else (if less_int zero_inta c then Lt (Cn (zero_nat, c, r)) - else Gt (Cn (zero_nat, uminus_int c, Neg r)))) + else (if less_int zero_inta c then Lt (CN (zero_nat, c, r)) + else Gt (CN (zero_nat, uminus_int c, Neg r)))) end | zlfm (Le a) = let val (c, r) = zsplit0 a; in (if equal_inta c zero_inta then Le r - else (if less_int zero_inta c then Le (Cn (zero_nat, c, r)) - else Ge (Cn (zero_nat, uminus_int c, Neg r)))) + else (if less_int zero_inta c then Le (CN (zero_nat, c, r)) + else Ge (CN (zero_nat, uminus_int c, Neg r)))) end | zlfm (Gt a) = let val (c, r) = zsplit0 a; in (if equal_inta c zero_inta then Gt r - else (if less_int zero_inta c then Gt (Cn (zero_nat, c, r)) - else Lt (Cn (zero_nat, uminus_int c, Neg r)))) + else (if less_int zero_inta c then Gt (CN (zero_nat, c, r)) + else Lt (CN (zero_nat, uminus_int c, Neg r)))) end | zlfm (Ge a) = let val (c, r) = zsplit0 a; in (if equal_inta c zero_inta then Ge r - else (if less_int zero_inta c then Ge (Cn (zero_nat, c, r)) - else Le (Cn (zero_nat, uminus_int c, Neg r)))) + else (if less_int zero_inta c then Ge (CN (zero_nat, c, r)) + else Le (CN (zero_nat, uminus_int c, Neg r)))) end | zlfm (Eq a) = let val (c, r) = zsplit0 a; in (if equal_inta c zero_inta then Eq r - else (if less_int zero_inta c then Eq (Cn (zero_nat, c, r)) - else Eq (Cn (zero_nat, uminus_int c, Neg r)))) + else (if less_int zero_inta c then Eq (CN (zero_nat, c, r)) + else Eq (CN (zero_nat, uminus_int c, Neg r)))) end | zlfm (NEq a) = let val (c, r) = zsplit0 a; in (if equal_inta c zero_inta then NEq r - else (if less_int zero_inta c then NEq (Cn (zero_nat, c, r)) - else NEq (Cn (zero_nat, uminus_int c, Neg r)))) + else (if less_int zero_inta c then NEq (CN (zero_nat, c, r)) + else NEq (CN (zero_nat, uminus_int c, Neg r)))) end | zlfm (Dvd (i, a)) = (if equal_inta i zero_inta then zlfm (Eq a) @@ -1824,8 +1916,8 @@ in (if equal_inta c zero_inta then Dvd (abs_int i, r) else (if less_int zero_inta c - then Dvd (abs_int i, Cn (zero_nat, c, r)) - else Dvd (abs_int i, Cn (zero_nat, uminus_int c, Neg r)))) + then Dvd (abs_int i, CN (zero_nat, c, r)) + else Dvd (abs_int i, CN (zero_nat, uminus_int c, Neg r)))) end) | zlfm (NDvd (i, a)) = (if equal_inta i zero_inta then zlfm (NEq a) @@ -1834,32 +1926,32 @@ in (if equal_inta c zero_inta then NDvd (abs_int i, r) else (if less_int zero_inta c - then NDvd (abs_int i, Cn (zero_nat, c, r)) + then NDvd (abs_int i, CN (zero_nat, c, r)) else NDvd (abs_int i, - Cn (zero_nat, uminus_int c, Neg r)))) + CN (zero_nat, uminus_int c, Neg r)))) end) - | zlfm (Not (And (p, q))) = Or (zlfm (Not p), zlfm (Not q)) - | zlfm (Not (Or (p, q))) = And (zlfm (Not p), zlfm (Not q)) - | zlfm (Not (Imp (p, q))) = And (zlfm p, zlfm (Not q)) - | zlfm (Not (Iff (p, q))) = - Or (And (zlfm p, zlfm (Not q)), And (zlfm (Not p), zlfm q)) - | zlfm (Not (Not p)) = zlfm p - | zlfm (Not T) = F - | zlfm (Not F) = T - | zlfm (Not (Lt a)) = zlfm (Ge a) - | zlfm (Not (Le a)) = zlfm (Gt a) - | zlfm (Not (Gt a)) = zlfm (Le a) - | zlfm (Not (Ge a)) = zlfm (Lt a) - | zlfm (Not (Eq a)) = zlfm (NEq a) - | zlfm (Not (NEq a)) = zlfm (Eq a) - | zlfm (Not (Dvd (i, a))) = zlfm (NDvd (i, a)) - | zlfm (Not (NDvd (i, a))) = zlfm (Dvd (i, a)) - | zlfm (Not (Closed p)) = NClosed p - | zlfm (Not (NClosed p)) = Closed p + | zlfm (NOT (And (p, q))) = Or (zlfm (NOT p), zlfm (NOT q)) + | zlfm (NOT (Or (p, q))) = And (zlfm (NOT p), zlfm (NOT q)) + | zlfm (NOT (Imp (p, q))) = And (zlfm p, zlfm (NOT q)) + | zlfm (NOT (Iff (p, q))) = + Or (And (zlfm p, zlfm (NOT q)), And (zlfm (NOT p), zlfm q)) + | zlfm (NOT (NOT p)) = zlfm p + | zlfm (NOT T) = F + | zlfm (NOT F) = T + | zlfm (NOT (Lt a)) = zlfm (Ge a) + | zlfm (NOT (Le a)) = zlfm (Gt a) + | zlfm (NOT (Gt a)) = zlfm (Le a) + | zlfm (NOT (Ge a)) = zlfm (Lt a) + | zlfm (NOT (Eq a)) = zlfm (NEq a) + | zlfm (NOT (NEq a)) = zlfm (Eq a) + | zlfm (NOT (Dvd (i, a))) = zlfm (NDvd (i, a)) + | zlfm (NOT (NDvd (i, a))) = zlfm (Dvd (i, a)) + | zlfm (NOT (Closed p)) = NClosed p + | zlfm (NOT (NClosed p)) = Closed p | zlfm T = T | zlfm F = F - | zlfm (Not (E ci)) = Not (E ci) - | zlfm (Not (A cj)) = Not (A cj) + | zlfm (NOT (E ci)) = NOT (E ci) + | zlfm (NOT (A cj)) = NOT (A cj) | zlfm (E ao) = E ao | zlfm (A ap) = A ap | zlfm (Closed aq) = Closed aq @@ -1870,7 +1962,7 @@ val pa = zlfm p; val l = zeta pa; val q = - And (Dvd (l, Cn (zero_nat, Int_of_integer (1 : IntInf.int), C zero_inta)), + And (Dvd (l, CN (zero_nat, Int_of_integer (1 : IntInf.int), C zero_inta)), a_beta pa l); val d = delta q; val b = remdups equal_num (map simpnum (beta q)); @@ -1885,7 +1977,7 @@ | decrnum (Add (a, b)) = Add (decrnum a, decrnum b) | decrnum (Sub (a, b)) = Sub (decrnum a, decrnum b) | decrnum (Mul (c, a)) = Mul (c, decrnum a) - | decrnum (Cn (n, i, a)) = Cn (minus_nat n one_nat, i, decrnum a) + | decrnum (CN (n, i, a)) = CN (minus_nat n one_nat, i, decrnum a) | decrnum (C v) = C v; fun decr (Lt a) = Lt (decrnum a) @@ -1896,7 +1988,7 @@ | decr (NEq a) = NEq (decrnum a) | decr (Dvd (i, a)) = Dvd (i, decrnum a) | decr (NDvd (i, a)) = NDvd (i, decrnum a) - | decr (Not p) = Not (decr p) + | decr (NOT p) = NOT (decr p) | decr (And (p, q)) = And (decr p, decr q) | decr (Or (p, q)) = Or (decr p, decr q) | decr (Imp (p, q)) = Imp (decr p, decr q) @@ -1910,7 +2002,7 @@ fun upto_aux i j js = (if less_int j i then js - else upto_aux i (minus_int j (Int_of_integer (1 : IntInf.int))) (j :: js)); + else upto_aux i (minus_inta j (Int_of_integer (1 : IntInf.int))) (j :: js)); fun uptoa i j = upto_aux i j []; @@ -1935,8 +2027,8 @@ end; fun qelim (E p) = (fn qe => dj qe (qelim p qe)) - | qelim (A p) = (fn qe => nota (qe (qelim (Not p) qe))) - | qelim (Not p) = (fn qe => nota (qelim p qe)) + | qelim (A p) = (fn qe => nota (qe (qelim (NOT p) qe))) + | qelim (NOT p) = (fn qe => nota (qelim p qe)) | qelim (And (p, q)) = (fn qe => conj (qelim p qe) (qelim q qe)) | qelim (Or (p, q)) = (fn qe => disj (qelim p qe) (qelim q qe)) | qelim (Imp (p, q)) = (fn qe => imp (qelim p qe) (qelim q qe)) @@ -1957,13 +2049,13 @@ fun prep (E T) = T | prep (E F) = F | prep (E (Or (p, q))) = Or (prep (E p), prep (E q)) - | prep (E (Imp (p, q))) = Or (prep (E (Not p)), prep (E q)) + | prep (E (Imp (p, q))) = Or (prep (E (NOT p)), prep (E q)) | prep (E (Iff (p, q))) = - Or (prep (E (And (p, q))), prep (E (And (Not p, Not q)))) - | prep (E (Not (And (p, q)))) = Or (prep (E (Not p)), prep (E (Not q))) - | prep (E (Not (Imp (p, q)))) = prep (E (And (p, Not q))) - | prep (E (Not (Iff (p, q)))) = - Or (prep (E (And (p, Not q))), prep (E (And (Not p, q)))) + Or (prep (E (And (p, q))), prep (E (And (NOT p, NOT q)))) + | prep (E (NOT (And (p, q)))) = Or (prep (E (NOT p)), prep (E (NOT q))) + | prep (E (NOT (Imp (p, q)))) = prep (E (And (p, NOT q))) + | prep (E (NOT (Iff (p, q)))) = + Or (prep (E (And (p, NOT q))), prep (E (And (NOT p, q)))) | prep (E (Lt ef)) = E (prep (Lt ef)) | prep (E (Le eg)) = E (prep (Le eg)) | prep (E (Gt eh)) = E (prep (Gt eh)) @@ -1972,69 +2064,69 @@ | prep (E (NEq ek)) = E (prep (NEq ek)) | prep (E (Dvd (el, em))) = E (prep (Dvd (el, em))) | prep (E (NDvd (en, eo))) = E (prep (NDvd (en, eo))) - | prep (E (Not T)) = E (prep (Not T)) - | prep (E (Not F)) = E (prep (Not F)) - | prep (E (Not (Lt gw))) = E (prep (Not (Lt gw))) - | prep (E (Not (Le gx))) = E (prep (Not (Le gx))) - | prep (E (Not (Gt gy))) = E (prep (Not (Gt gy))) - | prep (E (Not (Ge gz))) = E (prep (Not (Ge gz))) - | prep (E (Not (Eq ha))) = E (prep (Not (Eq ha))) - | prep (E (Not (NEq hb))) = E (prep (Not (NEq hb))) - | prep (E (Not (Dvd (hc, hd)))) = E (prep (Not (Dvd (hc, hd)))) - | prep (E (Not (NDvd (he, hf)))) = E (prep (Not (NDvd (he, hf)))) - | prep (E (Not (Not hg))) = E (prep (Not (Not hg))) - | prep (E (Not (Or (hj, hk)))) = E (prep (Not (Or (hj, hk)))) - | prep (E (Not (E hp))) = E (prep (Not (E hp))) - | prep (E (Not (A hq))) = E (prep (Not (A hq))) - | prep (E (Not (Closed hr))) = E (prep (Not (Closed hr))) - | prep (E (Not (NClosed hs))) = E (prep (Not (NClosed hs))) + | prep (E (NOT T)) = E (prep (NOT T)) + | prep (E (NOT F)) = E (prep (NOT F)) + | prep (E (NOT (Lt gw))) = E (prep (NOT (Lt gw))) + | prep (E (NOT (Le gx))) = E (prep (NOT (Le gx))) + | prep (E (NOT (Gt gy))) = E (prep (NOT (Gt gy))) + | prep (E (NOT (Ge gz))) = E (prep (NOT (Ge gz))) + | prep (E (NOT (Eq ha))) = E (prep (NOT (Eq ha))) + | prep (E (NOT (NEq hb))) = E (prep (NOT (NEq hb))) + | prep (E (NOT (Dvd (hc, hd)))) = E (prep (NOT (Dvd (hc, hd)))) + | prep (E (NOT (NDvd (he, hf)))) = E (prep (NOT (NDvd (he, hf)))) + | prep (E (NOT (NOT hg))) = E (prep (NOT (NOT hg))) + | prep (E (NOT (Or (hj, hk)))) = E (prep (NOT (Or (hj, hk)))) + | prep (E (NOT (E hp))) = E (prep (NOT (E hp))) + | prep (E (NOT (A hq))) = E (prep (NOT (A hq))) + | prep (E (NOT (Closed hr))) = E (prep (NOT (Closed hr))) + | prep (E (NOT (NClosed hs))) = E (prep (NOT (NClosed hs))) | prep (E (And (eq, er))) = E (prep (And (eq, er))) | prep (E (E ey)) = E (prep (E ey)) | prep (E (A ez)) = E (prep (A ez)) | prep (E (Closed fa)) = E (prep (Closed fa)) | prep (E (NClosed fb)) = E (prep (NClosed fb)) | prep (A (And (p, q))) = And (prep (A p), prep (A q)) - | prep (A T) = prep (Not (E (Not T))) - | prep (A F) = prep (Not (E (Not F))) - | prep (A (Lt jn)) = prep (Not (E (Not (Lt jn)))) - | prep (A (Le jo)) = prep (Not (E (Not (Le jo)))) - | prep (A (Gt jp)) = prep (Not (E (Not (Gt jp)))) - | prep (A (Ge jq)) = prep (Not (E (Not (Ge jq)))) - | prep (A (Eq jr)) = prep (Not (E (Not (Eq jr)))) - | prep (A (NEq js)) = prep (Not (E (Not (NEq js)))) - | prep (A (Dvd (jt, ju))) = prep (Not (E (Not (Dvd (jt, ju))))) - | prep (A (NDvd (jv, jw))) = prep (Not (E (Not (NDvd (jv, jw))))) - | prep (A (Not jx)) = prep (Not (E (Not (Not jx)))) - | prep (A (Or (ka, kb))) = prep (Not (E (Not (Or (ka, kb))))) - | prep (A (Imp (kc, kd))) = prep (Not (E (Not (Imp (kc, kd))))) - | prep (A (Iff (ke, kf))) = prep (Not (E (Not (Iff (ke, kf))))) - | prep (A (E kg)) = prep (Not (E (Not (E kg)))) - | prep (A (A kh)) = prep (Not (E (Not (A kh)))) - | prep (A (Closed ki)) = prep (Not (E (Not (Closed ki)))) - | prep (A (NClosed kj)) = prep (Not (E (Not (NClosed kj)))) - | prep (Not (Not p)) = prep p - | prep (Not (And (p, q))) = Or (prep (Not p), prep (Not q)) - | prep (Not (A p)) = prep (E (Not p)) - | prep (Not (Or (p, q))) = And (prep (Not p), prep (Not q)) - | prep (Not (Imp (p, q))) = And (prep p, prep (Not q)) - | prep (Not (Iff (p, q))) = Or (prep (And (p, Not q)), prep (And (Not p, q))) - | prep (Not T) = Not (prep T) - | prep (Not F) = Not (prep F) - | prep (Not (Lt bo)) = Not (prep (Lt bo)) - | prep (Not (Le bp)) = Not (prep (Le bp)) - | prep (Not (Gt bq)) = Not (prep (Gt bq)) - | prep (Not (Ge br)) = Not (prep (Ge br)) - | prep (Not (Eq bs)) = Not (prep (Eq bs)) - | prep (Not (NEq bt)) = Not (prep (NEq bt)) - | prep (Not (Dvd (bu, bv))) = Not (prep (Dvd (bu, bv))) - | prep (Not (NDvd (bw, bx))) = Not (prep (NDvd (bw, bx))) - | prep (Not (E ch)) = Not (prep (E ch)) - | prep (Not (Closed cj)) = Not (prep (Closed cj)) - | prep (Not (NClosed ck)) = Not (prep (NClosed ck)) + | prep (A T) = prep (NOT (E (NOT T))) + | prep (A F) = prep (NOT (E (NOT F))) + | prep (A (Lt jn)) = prep (NOT (E (NOT (Lt jn)))) + | prep (A (Le jo)) = prep (NOT (E (NOT (Le jo)))) + | prep (A (Gt jp)) = prep (NOT (E (NOT (Gt jp)))) + | prep (A (Ge jq)) = prep (NOT (E (NOT (Ge jq)))) + | prep (A (Eq jr)) = prep (NOT (E (NOT (Eq jr)))) + | prep (A (NEq js)) = prep (NOT (E (NOT (NEq js)))) + | prep (A (Dvd (jt, ju))) = prep (NOT (E (NOT (Dvd (jt, ju))))) + | prep (A (NDvd (jv, jw))) = prep (NOT (E (NOT (NDvd (jv, jw))))) + | prep (A (NOT jx)) = prep (NOT (E (NOT (NOT jx)))) + | prep (A (Or (ka, kb))) = prep (NOT (E (NOT (Or (ka, kb))))) + | prep (A (Imp (kc, kd))) = prep (NOT (E (NOT (Imp (kc, kd))))) + | prep (A (Iff (ke, kf))) = prep (NOT (E (NOT (Iff (ke, kf))))) + | prep (A (E kg)) = prep (NOT (E (NOT (E kg)))) + | prep (A (A kh)) = prep (NOT (E (NOT (A kh)))) + | prep (A (Closed ki)) = prep (NOT (E (NOT (Closed ki)))) + | prep (A (NClosed kj)) = prep (NOT (E (NOT (NClosed kj)))) + | prep (NOT (NOT p)) = prep p + | prep (NOT (And (p, q))) = Or (prep (NOT p), prep (NOT q)) + | prep (NOT (A p)) = prep (E (NOT p)) + | prep (NOT (Or (p, q))) = And (prep (NOT p), prep (NOT q)) + | prep (NOT (Imp (p, q))) = And (prep p, prep (NOT q)) + | prep (NOT (Iff (p, q))) = Or (prep (And (p, NOT q)), prep (And (NOT p, q))) + | prep (NOT T) = NOT (prep T) + | prep (NOT F) = NOT (prep F) + | prep (NOT (Lt bo)) = NOT (prep (Lt bo)) + | prep (NOT (Le bp)) = NOT (prep (Le bp)) + | prep (NOT (Gt bq)) = NOT (prep (Gt bq)) + | prep (NOT (Ge br)) = NOT (prep (Ge br)) + | prep (NOT (Eq bs)) = NOT (prep (Eq bs)) + | prep (NOT (NEq bt)) = NOT (prep (NEq bt)) + | prep (NOT (Dvd (bu, bv))) = NOT (prep (Dvd (bu, bv))) + | prep (NOT (NDvd (bw, bx))) = NOT (prep (NDvd (bw, bx))) + | prep (NOT (E ch)) = NOT (prep (E ch)) + | prep (NOT (Closed cj)) = NOT (prep (Closed cj)) + | prep (NOT (NClosed ck)) = NOT (prep (NClosed ck)) | prep (Or (p, q)) = Or (prep p, prep q) | prep (And (p, q)) = And (prep p, prep q) - | prep (Imp (p, q)) = prep (Or (Not p, q)) - | prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (Not p, Not q))) + | prep (Imp (p, q)) = prep (Or (NOT p, q)) + | prep (Iff (p, q)) = Or (prep (And (p, q)), prep (And (NOT p, NOT q))) | prep T = T | prep F = F | prep (Lt u) = Lt u @@ -2050,6 +2142,6 @@ fun pa p = qelim (prep p) cooper; -fun nat_of_integer k = Nat (max ord_integer 0 k); +fun nat_of_integer k = Nat (max ord_integer (0 : IntInf.int) k); end; (*struct Cooper_Procedure*)