# HG changeset patch # User huffman # Date 1333632206 -7200 # Node ID 8e6a45f1bf8fed26ce6849c7781656d5aa766c35 # Parent 9475d524bafb039006242e5485c28c2368b315b6 define reflp directly, in the manner of symp and transp diff -r 9475d524bafb -r 8e6a45f1bf8f src/HOL/Relation.thy --- a/src/HOL/Relation.thy Thu Apr 05 14:14:16 2012 +0200 +++ b/src/HOL/Relation.thy Thu Apr 05 15:23:26 2012 +0200 @@ -146,7 +146,7 @@ definition reflp :: "('a \ 'a \ bool) \ bool" where - "reflp r \ refl {(x, y). r x y}" + "reflp r \ (\x. r x x)" lemma reflp_refl_eq [pred_set_conv]: "reflp (\x y. (x, y) \ r) \ refl r"