# HG changeset patch # User wenzelm # Date 1407236175 -7200 # Node ID 8f074e6e22fc7da4fabca74f10ae2f045aab9599 # Parent 287e3b1298b375f7cdbd004bf2234bd569d4cf5d tuned proofs; diff -r 287e3b1298b3 -r 8f074e6e22fc src/HOL/Library/Diagonal_Subsequence.thy --- a/src/HOL/Library/Diagonal_Subsequence.thy Tue Aug 05 12:42:38 2014 +0200 +++ b/src/HOL/Library/Diagonal_Subsequence.thy Tue Aug 05 12:56:15 2014 +0200 @@ -27,8 +27,10 @@ lemma subseq_seqseq[intro, simp]: "subseq (seqseq n)" proof (induct n) - case (Suc n) thus ?case by (subst seqseq.simps) (auto simp: subseq_reduce intro!: subseq_o) -qed (simp add: subseq_def) + case 0 thus ?case by (simp add: subseq_def) +next + case (Suc n) thus ?case by (subst seqseq.simps) (auto intro!: subseq_o) +qed lemma seqseq_holds: "P n (seqseq (Suc n))" diff -r 287e3b1298b3 -r 8f074e6e22fc src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Tue Aug 05 12:42:38 2014 +0200 +++ b/src/HOL/Library/Float.thy Tue Aug 05 12:56:15 2014 +0200 @@ -610,8 +610,7 @@ by (auto intro: exI[where x="m*2^nat (e+p)"] simp add: ac_simps powr_add[symmetric] r powr_realpow) with `\ p + e < 0` show ?thesis - by transfer - (auto simp add: round_down_def field_simps powr_add powr_minus inverse_eq_divide) + by transfer (auto simp add: round_down_def field_simps powr_add powr_minus) qed hide_fact (open) compute_float_down @@ -682,8 +681,7 @@ by (auto simp add: ac_simps powr_add[symmetric] r1 powr_realpow intro: exI[where x="m*2^nat (e+p)"]) then show ?thesis using `\ p + e < 0` - by transfer - (simp add: round_up_def floor_divide_eq_div field_simps powr_add powr_minus inverse_eq_divide) + by transfer (simp add: round_up_def floor_divide_eq_div field_simps powr_add powr_minus) qed hide_fact (open) compute_float_up @@ -840,7 +838,7 @@ have "(1::int) < 2" by simp case False let ?S = "2^(nat (-e))" have "inverse (2 ^ nat (- e)) = 2 powr e" using assms False powr_realpow[of 2 "nat (-e)"] - by (auto simp: powr_minus field_simps inverse_eq_divide) + by (auto simp: powr_minus field_simps) hence "1 \ real m * inverse ?S" using assms False powr_realpow[of 2 "nat (-e)"] by (auto simp: powr_minus) hence "1 * ?S \ real m * inverse ?S * ?S" by (rule mult_right_mono, auto) @@ -940,7 +938,7 @@ have "int y * 2 ^ nat (- l) = y'" by (simp add: y'_def int_mult int_power) moreover have "real x * real (2::int) powr real l / real y = x / real y'" using `\ 0 \ l` - by (simp add: powr_realpow[symmetric] powr_minus y'_def field_simps inverse_eq_divide) + by (simp add: powr_realpow[symmetric] powr_minus y'_def field_simps) ultimately show ?thesis unfolding normfloat_def using ceil_divide_floor_conv[of y' x] `\ 0 \ l` `y' \ 0` `y \ 0` @@ -993,7 +991,7 @@ using rat_precision_pos[OF assms] by (rule power_aux) finally show ?thesis apply (transfer fixing: n x y) - apply (simp add: round_up_def field_simps powr_minus inverse_eq_divide powr1) + apply (simp add: round_up_def field_simps powr_minus powr1) unfolding int_of_reals real_of_int_less_iff apply (simp add: ceiling_less_eq) done @@ -1415,7 +1413,7 @@ by (simp add: powr_divide2[symmetric] powr_add powr_minus inverse_eq_divide) also have "\ = 2 powr (log 2 x - (real \log 2 x\) - 1)" using `0 < x` - by (auto simp: inverse_eq_divide field_simps powr_add powr_divide2[symmetric]) + by (auto simp: field_simps powr_add powr_divide2[symmetric]) also have "\ < 2 powr 0" using real_of_int_floor_add_one_gt unfolding neg_less_iff_less diff -r 287e3b1298b3 -r 8f074e6e22fc src/HOL/Library/Fundamental_Theorem_Algebra.thy --- a/src/HOL/Library/Fundamental_Theorem_Algebra.thy Tue Aug 05 12:42:38 2014 +0200 +++ b/src/HOL/Library/Fundamental_Theorem_Algebra.thy Tue Aug 05 12:56:15 2014 +0200 @@ -808,7 +808,7 @@ then have tw: "cmod ?w \ cmod w" using t(1) by (simp add: norm_mult) from t inv0 have "t * (cmod w ^ (k + 1) * m) < 1" - by (simp add: inverse_eq_divide field_simps) + by (simp add: field_simps) with zero_less_power[OF t(1), of k] have th30: "t^k * (t* (cmod w ^ (k + 1) * m)) < t^k * 1" by (metis comm_mult_strict_left_mono) have "cmod (?w^k * ?w * poly s ?w) = t^k * (t* (cmod w ^ (k + 1) * cmod (poly s ?w)))" diff -r 287e3b1298b3 -r 8f074e6e22fc src/HOL/Library/Lattice_Algebras.thy --- a/src/HOL/Library/Lattice_Algebras.thy Tue Aug 05 12:42:38 2014 +0200 +++ b/src/HOL/Library/Lattice_Algebras.thy Tue Aug 05 12:56:15 2014 +0200 @@ -396,7 +396,7 @@ proof - have g: "\a\ + \b\ = sup (a + b) (sup (- a - b) (sup (- a + b) (a + (- b))))" (is "_=sup ?m ?n") - by (simp add: abs_lattice add_sup_inf_distribs sup_aci ac_simps) + by (simp add: abs_lattice add_sup_inf_distribs ac_simps) have a: "a + b \ sup ?m ?n" by simp have b: "- a - b \ ?n" @@ -410,7 +410,7 @@ from a d e have "\a + b\ \ sup ?m ?n" apply - apply (drule abs_leI) - apply (simp_all only: algebra_simps ac_simps minus_add) + apply (simp_all only: algebra_simps minus_add) apply (metis add_uminus_conv_diff d sup_commute uminus_add_conv_diff) done with g[symmetric] show ?thesis by simp diff -r 287e3b1298b3 -r 8f074e6e22fc src/HOL/Library/Polynomial.thy --- a/src/HOL/Library/Polynomial.thy Tue Aug 05 12:42:38 2014 +0200 +++ b/src/HOL/Library/Polynomial.thy Tue Aug 05 12:56:15 2014 +0200 @@ -1315,8 +1315,7 @@ then have "finite {x. poly k x = 0}" using `k \ 0` by (rule Suc.hyps) then have "finite (insert a {x. poly k x = 0})" by simp then show "finite {x. poly p x = 0}" - by (simp add: k uminus_add_conv_diff Collect_disj_eq - del: mult_pCons_left) + by (simp add: k Collect_disj_eq del: mult_pCons_left) qed qed