# HG changeset patch # User paulson # Date 1022086547 -7200 # Node ID 8f4680be79cc22b3a1e005fd8d1b8b68fe99742f # Parent 03a5afa7b888aa17fdce9443e9181c9152a4f3f2 new version of nat_case, nat_case3 diff -r 03a5afa7b888 -r 8f4680be79cc src/ZF/Arith.thy --- a/src/ZF/Arith.thy Wed May 22 18:11:57 2002 +0200 +++ b/src/ZF/Arith.thy Wed May 22 18:55:47 2002 +0200 @@ -186,9 +186,7 @@ (** Difference **) lemma raw_diff_type: "[| m:nat; n:nat |] ==> raw_diff (m, n) : nat" -apply (induct_tac "n", auto) -apply (fast intro: nat_case_type) -done +by (induct_tac "n", auto) lemma diff_type [iff,TC]: "m #- n : nat" by (simp add: diff_def raw_diff_type) diff -r 03a5afa7b888 -r 8f4680be79cc src/ZF/Nat.thy --- a/src/ZF/Nat.thy Wed May 22 18:11:57 2002 +0200 +++ b/src/ZF/Nat.thy Wed May 22 18:55:47 2002 +0200 @@ -12,9 +12,15 @@ nat :: i "nat == lfp(Inf, %X. {0} Un {succ(i). i:X})" + (*Has an unconditional succ case, which is used in "recursor" below.*) nat_case :: "[i, i=>i, i]=>i" "nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))" + (*Slightly different from the version above. Requires k to be a + natural number, but it has a splitting rule.*) + nat_case3 :: "[i, i=>i, i]=>i" + "nat_case3(a,b,k) == THE y. k=0 & y=a | (EX x:nat. k=succ(x) & y=b(x))" + nat_rec :: "[i, i, [i,i]=>i]=>i" "nat_rec(k,a,b) == wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))" @@ -193,17 +199,43 @@ (** nat_case **) lemma nat_case_0 [simp]: "nat_case(a,b,0) = a" -by (unfold nat_case_def, blast) +by (simp add: nat_case_def, blast) + +lemma nat_case_succ [simp]: "nat_case(a,b,succ(n)) = b(n)" +by (simp add: nat_case_def, blast) -lemma nat_case_succ [simp]: "nat_case(a,b,succ(m)) = b(m)" -by (unfold nat_case_def, blast) +lemma nat_case_type [TC]: + "[| n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m)) |] + ==> nat_case(a,b,n) : C(n)"; +by (erule nat_induct, auto) + +(** nat_case3 **) + +lemma nat_case3_0 [simp]: "nat_case3(a,b,0) = a" +by (simp add: nat_case3_def, blast) + +lemma nat_case3_succ [simp]: "n\nat \ nat_case3(a,b,succ(n)) = b(n)" +by (simp add: nat_case3_def, blast) -lemma nat_case_type: - "[| n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m)) |] - ==> nat_case(a,b,n) : C(n)" -apply (erule nat_induct, auto) +lemma non_nat_case3: "x\nat \ nat_case3(a,b,x) = 0" +apply (simp add: nat_case3_def) +apply (blast intro: the_0) done +lemma split_nat_case3: + "P(nat_case3(a,b,k)) <-> + ((k=0 --> P(a)) & (\x\nat. k=succ(x) --> P(b(x))) & (k \ nat \ P(0)))" +apply (rule_tac P="k\nat" in case_split_thm) + (*case_tac method not available yet; needs "inductive"*) +apply (erule natE) +apply (auto simp add: non_nat_case3) +done + +lemma nat_case3_type [TC]: + "[| n: nat; a: C(0); !!m. m: nat ==> b(m): C(succ(m)) |] + ==> nat_case3(a,b,n) : C(n)"; +by (erule nat_induct, auto) + (** nat_rec -- used to define eclose and transrec, then obsolete rec, from arith.ML, has fewer typing conditions **) @@ -222,12 +254,12 @@ (** The union of two natural numbers is a natural number -- their maximum **) -lemma Un_nat_type: "[| i: nat; j: nat |] ==> i Un j: nat" +lemma Un_nat_type [TC]: "[| i: nat; j: nat |] ==> i Un j: nat" apply (rule Un_least_lt [THEN ltD]) apply (simp_all add: lt_def) done -lemma Int_nat_type: "[| i: nat; j: nat |] ==> i Int j: nat" +lemma Int_nat_type [TC]: "[| i: nat; j: nat |] ==> i Int j: nat" apply (rule Int_greatest_lt [THEN ltD]) apply (simp_all add: lt_def) done