# HG changeset patch # User nipkow # Date 1391532255 -3600 # Node ID 908fd015cf2e5b6145ba11b39fdb10ac481e817e # Parent 834a84553e0289d6d74b13b7ae9e47dccea3ac6b tuned diff -r 834a84553e02 -r 908fd015cf2e src/Doc/ProgProve/Bool_nat_list.thy --- a/src/Doc/ProgProve/Bool_nat_list.thy Tue Feb 04 17:38:54 2014 +0100 +++ b/src/Doc/ProgProve/Bool_nat_list.thy Tue Feb 04 17:44:15 2014 +0100 @@ -226,7 +226,7 @@ \item the base case @{prop"P(Nil)"} and \item the inductive case @{prop"P(Cons x xs)"} under the assumption @{prop"P(xs)"}, for some arbitrary but fixed @{text x} and @{text xs}. \end{enumerate} -This is often called \concept{structural induction}. +This is often called \concept{structural induction} for lists. \subsection{The Proof Process} diff -r 834a84553e02 -r 908fd015cf2e src/Doc/ProgProve/Types_and_funs.thy --- a/src/Doc/ProgProve/Types_and_funs.thy Tue Feb 04 17:38:54 2014 +0100 +++ b/src/Doc/ProgProve/Types_and_funs.thy Tue Feb 04 17:44:15 2014 +0100 @@ -39,7 +39,7 @@ \end{tabular} \end{itemize} The fact that any value of the datatype is built from the constructors implies -the structural induction rule: to show +the \concept{structural induction} rule: to show $P~x$ for all $x$ of type @{text "('a\<^sub>1,\,'a\<^sub>n)t"}, one needs to show $P(C_i\ x_1 \dots x_{n_i})$ (for each $i$) assuming $P(x_j)$ for all $j$ where $\tau_{i,j} =$~@{text "('a\<^sub>1,\,'a\<^sub>n)t"}.