# HG changeset patch # User wenzelm # Date 1392495089 -3600 # Node ID 90c42b1306525225914749799342765dbcb02f6e # Parent 5f27fb2110e0f7beeda4b0ebe1098138b9bb687e tuned whitespace; diff -r 5f27fb2110e0 -r 90c42b130652 src/HOL/Library/Sum_of_Squares/positivstellensatz_tools.ML --- a/src/HOL/Library/Sum_of_Squares/positivstellensatz_tools.ML Sat Feb 15 21:09:48 2014 +0100 +++ b/src/HOL/Library/Sum_of_Squares/positivstellensatz_tools.ML Sat Feb 15 21:11:29 2014 +0100 @@ -8,11 +8,9 @@ signature POSITIVSTELLENSATZ_TOOLS = sig val pss_tree_to_cert : RealArith.pss_tree -> string - val cert_to_pss_tree : Proof.context -> string -> RealArith.pss_tree end - structure PositivstellensatzTools : POSITIVSTELLENSATZ_TOOLS = struct @@ -31,35 +29,34 @@ fun string_of_varpow x k = let val term = term_of x - val name = case term of - Free (n, _) => n - | _ => error "Term in monomial not free variable" + val name = + (case term of + Free (n, _) => n + | _ => error "Term in monomial not free variable") in - if k = 1 then name else name ^ "^" ^ string_of_int k + if k = 1 then name else name ^ "^" ^ string_of_int k end -fun string_of_monomial m = - if FuncUtil.Ctermfunc.is_empty m then "1" - else - let - val m' = FuncUtil.dest_monomial m - val vps = fold_rev (fn (x,k) => cons (string_of_varpow x k)) m' [] - in foldr1 (fn (s, t) => s ^ "*" ^ t) vps - end +fun string_of_monomial m = + if FuncUtil.Ctermfunc.is_empty m then "1" + else + let + val m' = FuncUtil.dest_monomial m + val vps = fold_rev (fn (x,k) => cons (string_of_varpow x k)) m' [] + in foldr1 (fn (s, t) => s ^ "*" ^ t) vps end fun string_of_cmonomial (m,c) = if FuncUtil.Ctermfunc.is_empty m then string_of_rat c else if c = Rat.one then string_of_monomial m - else (string_of_rat c) ^ "*" ^ (string_of_monomial m); + else string_of_rat c ^ "*" ^ string_of_monomial m; -fun string_of_poly p = - if FuncUtil.Monomialfunc.is_empty p then "0" - else - let - val cms = map string_of_cmonomial - (sort (prod_ord FuncUtil.monomial_order (K EQUAL)) (FuncUtil.Monomialfunc.dest p)) - in foldr1 (fn (t1, t2) => t1 ^ " + " ^ t2) cms - end; +fun string_of_poly p = + if FuncUtil.Monomialfunc.is_empty p then "0" + else + let + val cms = map string_of_cmonomial + (sort (prod_ord FuncUtil.monomial_order (K EQUAL)) (FuncUtil.Monomialfunc.dest p)) + in foldr1 (fn (t1, t2) => t1 ^ " + " ^ t2) cms end; fun pss_to_cert (RealArith.Axiom_eq i) = "A=" ^ string_of_int i | pss_to_cert (RealArith.Axiom_le i) = "A<=" ^ string_of_int i @@ -68,13 +65,18 @@ | pss_to_cert (RealArith.Rational_le r) = "R<=" ^ string_of_rat r | pss_to_cert (RealArith.Rational_lt r) = "R<" ^ string_of_rat r | pss_to_cert (RealArith.Square p) = "[" ^ string_of_poly p ^ "]^2" - | pss_to_cert (RealArith.Eqmul (p, pss)) = "([" ^ string_of_poly p ^ "] * " ^ pss_to_cert pss ^ ")" - | pss_to_cert (RealArith.Sum (pss1, pss2)) = "(" ^ pss_to_cert pss1 ^ " + " ^ pss_to_cert pss2 ^ ")" - | pss_to_cert (RealArith.Product (pss1, pss2)) = "(" ^ pss_to_cert pss1 ^ " * " ^ pss_to_cert pss2 ^ ")" + | pss_to_cert (RealArith.Eqmul (p, pss)) = + "([" ^ string_of_poly p ^ "] * " ^ pss_to_cert pss ^ ")" + | pss_to_cert (RealArith.Sum (pss1, pss2)) = + "(" ^ pss_to_cert pss1 ^ " + " ^ pss_to_cert pss2 ^ ")" + | pss_to_cert (RealArith.Product (pss1, pss2)) = + "(" ^ pss_to_cert pss1 ^ " * " ^ pss_to_cert pss2 ^ ")" fun pss_tree_to_cert RealArith.Trivial = "()" | pss_tree_to_cert (RealArith.Cert pss) = "(" ^ pss_to_cert pss ^ ")" - | pss_tree_to_cert (RealArith.Branch (t1, t2)) = "(" ^ pss_tree_to_cert t1 ^ " & " ^ pss_tree_to_cert t2 ^ ")" + | pss_tree_to_cert (RealArith.Branch (t1, t2)) = + "(" ^ pss_tree_to_cert t1 ^ " & " ^ pss_tree_to_cert t2 ^ ")" + (*** certificate parsing ***) @@ -82,15 +84,16 @@ val str = Scan.this_string -val number = Scan.repeat1 (Scan.one Symbol.is_ascii_digit >> - (fn s => ord s - ord "0")) >> - foldl1 (fn (n, d) => n * 10 + d) +val number = + Scan.repeat1 (Scan.one Symbol.is_ascii_digit >> (fn s => ord s - ord "0")) + >> foldl1 (fn (n, d) => n * 10 + d) val nat = number val int = Scan.optional (str "~" >> K ~1) 1 -- nat >> op *; val rat = int --| str "/" -- int >> Rat.rat_of_quotient val rat_int = rat || int >> Rat.rat_of_int + (* polynomial parser *) fun repeat_sep s f = f ::: Scan.repeat (str s |-- f) @@ -98,7 +101,7 @@ val parse_id = Scan.one Symbol.is_letter ::: Scan.many Symbol.is_letdig >> implode fun parse_varpow ctxt = parse_id -- Scan.optional (str "^" |-- nat) 1 >> - (fn (x, k) => (cterm_of (Proof_Context.theory_of ctxt) (Free (x, @{typ real})), k)) + (fn (x, k) => (cterm_of (Proof_Context.theory_of ctxt) (Free (x, @{typ real})), k)) fun parse_monomial ctxt = repeat_sep "*" (parse_varpow ctxt) >> (fn xs => fold FuncUtil.Ctermfunc.update xs FuncUtil.Ctermfunc.empty) @@ -111,6 +114,7 @@ fun parse_poly ctxt = repeat_sep "+" (parse_cmonomial ctxt) >> (fn xs => fold FuncUtil.Monomialfunc.update xs FuncUtil.Monomialfunc.empty) + (* positivstellensatz parser *) val parse_axiom = @@ -128,12 +132,12 @@ val pc = parse_cert ctxt val pp = parse_poly ctxt in - (parse_axiom || - parse_rational || - str "[" |-- pp --| str "]^2" >> RealArith.Square || - str "([" |-- pp --| str "]*" -- pc --| str ")" >> RealArith.Eqmul || - str "(" |-- pc --| str "*" -- pc --| str ")" >> RealArith.Product || - str "(" |-- pc --| str "+" -- pc --| str ")" >> RealArith.Sum) input + (parse_axiom || + parse_rational || + str "[" |-- pp --| str "]^2" >> RealArith.Square || + str "([" |-- pp --| str "]*" -- pc --| str ")" >> RealArith.Eqmul || + str "(" |-- pc --| str "*" -- pc --| str ")" >> RealArith.Product || + str "(" |-- pc --| str "+" -- pc --| str ")" >> RealArith.Sum) input end fun parse_cert_tree ctxt input = @@ -141,11 +145,12 @@ val pc = parse_cert ctxt val pt = parse_cert_tree ctxt in - (str "()" >> K RealArith.Trivial || - str "(" |-- pc --| str ")" >> RealArith.Cert || - str "(" |-- pt --| str "&" -- pt --| str ")" >> RealArith.Branch) input + (str "()" >> K RealArith.Trivial || + str "(" |-- pc --| str ")" >> RealArith.Cert || + str "(" |-- pt --| str "&" -- pt --| str ")" >> RealArith.Branch) input end + (* scanner *) fun cert_to_pss_tree ctxt input_str = diff -r 5f27fb2110e0 -r 90c42b130652 src/HOL/Library/Sum_of_Squares/sum_of_squares.ML --- a/src/HOL/Library/Sum_of_Squares/sum_of_squares.ML Sat Feb 15 21:09:48 2014 +0100 +++ b/src/HOL/Library/Sum_of_Squares/sum_of_squares.ML Sat Feb 15 21:11:29 2014 +0100 @@ -23,9 +23,14 @@ val max = Integer.max; val denominator_rat = Rat.quotient_of_rat #> snd #> Rat.rat_of_int; + fun int_of_rat a = - case Rat.quotient_of_rat a of (i,1) => i | _ => error "int_of_rat: not an int"; -fun lcm_rat x y = Rat.rat_of_int (Integer.lcm (int_of_rat x) (int_of_rat y)); + (case Rat.quotient_of_rat a of + (i, 1) => i + | _ => error "int_of_rat: not an int"); + +fun lcm_rat x y = + Rat.rat_of_int (Integer.lcm (int_of_rat x) (int_of_rat y)); fun rat_pow r i = let fun pow r i = @@ -36,11 +41,12 @@ in if i < 0 then pow (Rat.inv r) (~ i) else pow r i end; fun round_rat r = - let val (a,b) = Rat.quotient_of_rat (Rat.abs r) - val d = a div b - val s = if r = b then d + 1 else d) end + let + val (a,b) = Rat.quotient_of_rat (Rat.abs r) + val d = a div b + val s = if r = b then d + 1 else d) end val abs_rat = Rat.abs; val pow2 = rat_pow rat_2; @@ -61,76 +67,84 @@ (* Turn a rational into a decimal string with d sig digits. *) local + fun normalize y = if abs_rat y =/ rat_1 then normalize (y // rat_10) + 1 else 0 - in + +in + fun decimalize d x = - if x =/ rat_0 then "0.0" else - let - val y = Rat.abs x - val e = normalize y - val z = pow10(~ e) */ y +/ rat_1 - val k = int_of_rat (round_rat(pow10 d */ z)) - in (if x a - | h::t => itern (k + 1) t f (f h k a); + | h::t => itern (k + 1) t f (f h k a)); fun iter (m,n) f a = if n < m then a - else iter (m+1,n) f (f m a); + else iter (m + 1, n) f (f m a); (* The main types. *) -type vector = int* Rat.rat FuncUtil.Intfunc.table; +type vector = int * Rat.rat FuncUtil.Intfunc.table; -type matrix = (int*int)*(Rat.rat FuncUtil.Intpairfunc.table); +type matrix = (int * int) * Rat.rat FuncUtil.Intpairfunc.table; -fun iszero (_,r) = r =/ rat_0; +fun iszero (_, r) = r =/ rat_0; (* Vectors. Conventionally indexed 1..n. *) -fun vector_0 n = (n,FuncUtil.Intfunc.empty):vector; +fun vector_0 n = (n, FuncUtil.Intfunc.empty): vector; -fun dim (v:vector) = fst v; +fun dim (v: vector) = fst v; -fun vector_cmul c (v:vector) = - let val n = dim v - in if c =/ rat_0 then vector_0 n +fun vector_cmul c (v: vector) = + let val n = dim v in + if c =/ rat_0 then vector_0 n else (n,FuncUtil.Intfunc.map (fn _ => fn x => c */ x) (snd v)) - end; + end; fun vector_of_list l = - let val n = length l - in (n,fold_rev2 (curry FuncUtil.Intfunc.update) (1 upto n) l FuncUtil.Intfunc.empty) :vector - end; + let val n = length l in + (n, fold_rev2 (curry FuncUtil.Intfunc.update) (1 upto n) l FuncUtil.Intfunc.empty): vector + end; (* Matrices; again rows and columns indexed from 1. *) -fun dimensions (m:matrix) = fst m; +fun dimensions (m: matrix) = fst m; -fun row k (m:matrix) = - let val (_,j) = dimensions m - in (j, - FuncUtil.Intpairfunc.fold (fn ((i,j), c) => fn a => if i = k then FuncUtil.Intfunc.update (j,c) a else a) (snd m) FuncUtil.Intfunc.empty ) : vector - end; +fun row k (m: matrix) : vector = + let val (_, j) = dimensions m in + (j, + FuncUtil.Intpairfunc.fold (fn ((i, j), c) => fn a => + if i = k then FuncUtil.Intfunc.update (j, c) a else a) (snd m) FuncUtil.Intfunc.empty) + end; (* Monomials. *) fun monomial_eval assig m = FuncUtil.Ctermfunc.fold (fn (x, k) => fn a => a */ rat_pow (FuncUtil.Ctermfunc.apply assig x) k) - m rat_1; + m rat_1; + val monomial_1 = FuncUtil.Ctermfunc.empty; fun monomial_var x = FuncUtil.Ctermfunc.onefunc (x, 1); @@ -139,9 +153,9 @@ FuncUtil.Ctermfunc.combine Integer.add (K false); fun monomial_multidegree m = - FuncUtil.Ctermfunc.fold (fn (_, k) => fn a => k + a) m 0;; + FuncUtil.Ctermfunc.fold (fn (_, k) => fn a => k + a) m 0; -fun monomial_variables m = FuncUtil.Ctermfunc.dom m;; +fun monomial_variables m = FuncUtil.Ctermfunc.dom m; (* Polynomials. *) @@ -151,18 +165,20 @@ val poly_0 = FuncUtil.Monomialfunc.empty; fun poly_isconst p = - FuncUtil.Monomialfunc.fold (fn (m, _) => fn a => FuncUtil.Ctermfunc.is_empty m andalso a) p true; + FuncUtil.Monomialfunc.fold (fn (m, _) => fn a => FuncUtil.Ctermfunc.is_empty m andalso a) + p true; -fun poly_var x = FuncUtil.Monomialfunc.onefunc (monomial_var x,rat_1); +fun poly_var x = FuncUtil.Monomialfunc.onefunc (monomial_var x, rat_1); fun poly_const c = - if c =/ rat_0 then poly_0 else FuncUtil.Monomialfunc.onefunc(monomial_1, c); + if c =/ rat_0 then poly_0 else FuncUtil.Monomialfunc.onefunc (monomial_1, c); fun poly_cmul c p = if c =/ rat_0 then poly_0 else FuncUtil.Monomialfunc.map (fn _ => fn x => c */ x) p; -fun poly_neg p = FuncUtil.Monomialfunc.map (K Rat.neg) p;; +fun poly_neg p = FuncUtil.Monomialfunc.map (K Rat.neg) p; + fun poly_add p1 p2 = FuncUtil.Monomialfunc.combine (curry op +/) (fn x => x =/ rat_0) p1 p2; @@ -170,10 +186,13 @@ fun poly_sub p1 p2 = poly_add p1 (poly_neg p2); fun poly_cmmul (c,m) p = - if c =/ rat_0 then poly_0 - else if FuncUtil.Ctermfunc.is_empty m - then FuncUtil.Monomialfunc.map (fn _ => fn d => c */ d) p - else FuncUtil.Monomialfunc.fold (fn (m', d) => fn a => (FuncUtil.Monomialfunc.update (monomial_mul m m', c */ d) a)) p poly_0; + if c =/ rat_0 then poly_0 + else + if FuncUtil.Ctermfunc.is_empty m + then FuncUtil.Monomialfunc.map (fn _ => fn d => c */ d) p + else + FuncUtil.Monomialfunc.fold (fn (m', d) => fn a => + (FuncUtil.Monomialfunc.update (monomial_mul m m', c */ d) a)) p poly_0; fun poly_mul p1 p2 = FuncUtil.Monomialfunc.fold (fn (m, c) => fn a => poly_add (poly_cmmul (c,m) p2) a) p1 poly_0; @@ -181,242 +200,265 @@ fun poly_square p = poly_mul p p; fun poly_pow p k = - if k = 0 then poly_const rat_1 - else if k = 1 then p - else let val q = poly_square(poly_pow p (k div 2)) in - if k mod 2 = 1 then poly_mul p q else q end; + if k = 0 then poly_const rat_1 + else if k = 1 then p + else + let val q = poly_square(poly_pow p (k div 2)) + in if k mod 2 = 1 then poly_mul p q else q end; fun multidegree p = FuncUtil.Monomialfunc.fold (fn (m, _) => fn a => max (monomial_multidegree m) a) p 0; fun poly_variables p = - sort FuncUtil.cterm_ord (FuncUtil.Monomialfunc.fold_rev (fn (m, _) => union (is_equal o FuncUtil.cterm_ord) (monomial_variables m)) p []);; + sort FuncUtil.cterm_ord + (FuncUtil.Monomialfunc.fold_rev + (fn (m, _) => union (is_equal o FuncUtil.cterm_ord) (monomial_variables m)) p []); (* Conversion from HOL term. *) local - val neg_tm = @{cterm "uminus :: real => _"} - val add_tm = @{cterm "op + :: real => _"} - val sub_tm = @{cterm "op - :: real => _"} - val mul_tm = @{cterm "op * :: real => _"} - val inv_tm = @{cterm "inverse :: real => _"} - val div_tm = @{cterm "op / :: real => _"} - val pow_tm = @{cterm "op ^ :: real => _"} - val zero_tm = @{cterm "0:: real"} - val is_numeral = can (HOLogic.dest_number o term_of) - fun poly_of_term tm = - if tm aconvc zero_tm then poly_0 - else if RealArith.is_ratconst tm - then poly_const(RealArith.dest_ratconst tm) - else - (let val (lop,r) = Thm.dest_comb tm - in if lop aconvc neg_tm then poly_neg(poly_of_term r) - else if lop aconvc inv_tm then - let val p = poly_of_term r - in if poly_isconst p - then poly_const(Rat.inv (eval FuncUtil.Ctermfunc.empty p)) - else error "poly_of_term: inverse of non-constant polyomial" - end - else (let val (opr,l) = Thm.dest_comb lop - in - if opr aconvc pow_tm andalso is_numeral r - then poly_pow (poly_of_term l) ((snd o HOLogic.dest_number o term_of) r) - else if opr aconvc add_tm - then poly_add (poly_of_term l) (poly_of_term r) - else if opr aconvc sub_tm - then poly_sub (poly_of_term l) (poly_of_term r) - else if opr aconvc mul_tm - then poly_mul (poly_of_term l) (poly_of_term r) - else if opr aconvc div_tm - then let + val neg_tm = @{cterm "uminus :: real => _"} + val add_tm = @{cterm "op + :: real => _"} + val sub_tm = @{cterm "op - :: real => _"} + val mul_tm = @{cterm "op * :: real => _"} + val inv_tm = @{cterm "inverse :: real => _"} + val div_tm = @{cterm "op / :: real => _"} + val pow_tm = @{cterm "op ^ :: real => _"} + val zero_tm = @{cterm "0:: real"} + val is_numeral = can (HOLogic.dest_number o term_of) + fun poly_of_term tm = + if tm aconvc zero_tm then poly_0 + else + if RealArith.is_ratconst tm + then poly_const(RealArith.dest_ratconst tm) + else + (let + val (lop, r) = Thm.dest_comb tm + in + if lop aconvc neg_tm then poly_neg(poly_of_term r) + else if lop aconvc inv_tm then + let val p = poly_of_term r in + if poly_isconst p + then poly_const(Rat.inv (eval FuncUtil.Ctermfunc.empty p)) + else error "poly_of_term: inverse of non-constant polyomial" + end + else + (let + val (opr,l) = Thm.dest_comb lop + in + if opr aconvc pow_tm andalso is_numeral r + then poly_pow (poly_of_term l) ((snd o HOLogic.dest_number o term_of) r) + else if opr aconvc add_tm + then poly_add (poly_of_term l) (poly_of_term r) + else if opr aconvc sub_tm + then poly_sub (poly_of_term l) (poly_of_term r) + else if opr aconvc mul_tm + then poly_mul (poly_of_term l) (poly_of_term r) + else if opr aconvc div_tm + then + let val p = poly_of_term l val q = poly_of_term r - in if poly_isconst q then poly_cmul (Rat.inv (eval FuncUtil.Ctermfunc.empty q)) p - else error "poly_of_term: division by non-constant polynomial" + in + if poly_isconst q + then poly_cmul (Rat.inv (eval FuncUtil.Ctermfunc.empty q)) p + else error "poly_of_term: division by non-constant polynomial" end - else poly_var tm - - end - handle CTERM ("dest_comb",_) => poly_var tm) - end - handle CTERM ("dest_comb",_) => poly_var tm) + else poly_var tm + end handle CTERM ("dest_comb",_) => poly_var tm) + end handle CTERM ("dest_comb",_) => poly_var tm) in -val poly_of_term = fn tm => - if type_of (term_of tm) = @{typ real} then poly_of_term tm - else error "poly_of_term: term does not have real type" + val poly_of_term = fn tm => + if type_of (term_of tm) = @{typ real} + then poly_of_term tm + else error "poly_of_term: term does not have real type" end; (* String of vector (just a list of space-separated numbers). *) -fun sdpa_of_vector (v:vector) = - let - val n = dim v - val strs = map (decimalize 20 o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) - in space_implode " " strs ^ "\n" - end; +fun sdpa_of_vector (v: vector) = + let + val n = dim v + val strs = + map (decimalize 20 o (fn i => FuncUtil.Intfunc.tryapplyd (snd v) i rat_0)) (1 upto n) + in space_implode " " strs ^ "\n" end; -fun triple_int_ord ((a,b,c),(a',b',c')) = - prod_ord int_ord (prod_ord int_ord int_ord) - ((a,(b,c)),(a',(b',c'))); -structure Inttriplefunc = FuncFun(type key = int*int*int val ord = triple_int_ord); +fun triple_int_ord ((a, b, c), (a', b', c')) = + prod_ord int_ord (prod_ord int_ord int_ord) ((a, (b, c)), (a', (b', c'))); +structure Inttriplefunc = FuncFun(type key = int * int * int val ord = triple_int_ord); fun index_char str chr pos = if pos >= String.size str then ~1 else if String.sub(str,pos) = chr then pos else index_char str chr (pos + 1); -fun rat_of_quotient (a,b) = if b = 0 then rat_0 else Rat.rat_of_quotient (a,b); + +fun rat_of_quotient (a,b) = + if b = 0 then rat_0 else Rat.rat_of_quotient (a, b); + fun rat_of_string s = - let val n = index_char s #"/" 0 in - if n = ~1 then s |> Int.fromString |> the |> Rat.rat_of_int - else - let val SOME numer = Int.fromString(String.substring(s,0,n)) - val SOME den = Int.fromString (String.substring(s,n+1,String.size s - n - 1)) - in rat_of_quotient(numer, den) - end - end; + let val n = index_char s #"/" 0 in + if n = ~1 then s |> Int.fromString |> the |> Rat.rat_of_int + else + let + val SOME numer = Int.fromString(String.substring(s,0,n)) + val SOME den = Int.fromString (String.substring(s,n+1,String.size s - n - 1)) + in rat_of_quotient(numer, den) end + end; -fun isnum x = member (op =) ["0","1","2","3","4","5","6","7","8","9"] x; +fun isnum x = member (op =) ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"] x; (* More parser basics. *) (* FIXME improper use of parser combinators ahead *) - val numeral = Scan.one isnum - val decimalint = Scan.repeat1 numeral >> (rat_of_string o implode) - val decimalfrac = Scan.repeat1 numeral - >> (fn s => rat_of_string(implode s) // pow10 (length s)) - val decimalsig = - decimalint -- Scan.option (Scan.$$ "." |-- decimalfrac) - >> (fn (h,NONE) => h | (h,SOME x) => h +/ x) - fun signed prs = - $$ "-" |-- prs >> Rat.neg - || $$ "+" |-- prs - || prs; +val numeral = Scan.one isnum +val decimalint = Scan.repeat1 numeral >> (rat_of_string o implode) +val decimalfrac = Scan.repeat1 numeral + >> (fn s => rat_of_string(implode s) // pow10 (length s)) +val decimalsig = + decimalint -- Scan.option (Scan.$$ "." |-- decimalfrac) + >> (fn (h,NONE) => h | (h,SOME x) => h +/ x) +fun signed prs = + $$ "-" |-- prs >> Rat.neg + || $$ "+" |-- prs + || prs; -fun emptyin def xs = if null xs then (def,xs) else Scan.fail xs +fun emptyin def xs = if null xs then (def, xs) else Scan.fail xs - val exponent = ($$ "e" || $$ "E") |-- signed decimalint; +val exponent = ($$ "e" || $$ "E") |-- signed decimalint; - val decimal = signed decimalsig -- (emptyin rat_0|| exponent) - >> (fn (h, x) => h */ pow10 (int_of_rat x)); +val decimal = signed decimalsig -- (emptyin rat_0|| exponent) + >> (fn (h, x) => h */ pow10 (int_of_rat x)); - fun mkparser p s = +fun mkparser p s = let val (x,rst) = p (raw_explode s) - in if null rst then x - else error "mkparser: unparsed input" - end;; + in if null rst then x else error "mkparser: unparsed input" end; (* Parse back csdp output. *) (* FIXME improper use of parser combinators ahead *) - fun ignore _ = ((),[]) - fun csdpoutput inp = - ((decimal -- Scan.repeat (Scan.$$ " " |-- Scan.option decimal) >> +fun ignore _ = ((),[]) +fun csdpoutput inp = + ((decimal -- Scan.repeat (Scan.$$ " " |-- Scan.option decimal) >> (fn (h,to) => map_filter I ((SOME h)::to))) --| ignore >> vector_of_list) inp - val parse_csdpoutput = mkparser csdpoutput +val parse_csdpoutput = mkparser csdpoutput (* Try some apparently sensible scaling first. Note that this is purely to *) (* get a cleaner translation to floating-point, and doesn't affect any of *) (* the results, in principle. In practice it seems a lot better when there *) (* are extreme numbers in the original problem. *) - (* Version for (int*int*int) keys *) +(* Version for (int*int*int) keys *) local fun max_rat x y = if x fn a => lcm_rat (denominator_rat c) a) amat acc + fld (fn (_,c) => fn a => lcm_rat (denominator_rat c) a) amat acc fun maximal_element fld amat acc = fld (fn (_,c) => fn maxa => max_rat maxa (abs_rat c)) amat acc -fun float_of_rat x = let val (a,b) = Rat.quotient_of_rat x - in Real.fromInt a / Real.fromInt b end; -fun int_of_float x = (trunc x handle Overflow => 0 | Domain => 0) + fun float_of_rat x = + let val (a,b) = Rat.quotient_of_rat x + in Real.fromInt a / Real.fromInt b end; + fun int_of_float x = (trunc x handle Overflow => 0 | Domain => 0) in -fun tri_scale_then solver (obj:vector) mats = - let - val cd1 = fold_rev (common_denominator Inttriplefunc.fold) mats (rat_1) - val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj) (rat_1) - val mats' = map (Inttriplefunc.map (fn _ => fn x => cd1 */ x)) mats - val obj' = vector_cmul cd2 obj - val max1 = fold_rev (maximal_element Inttriplefunc.fold) mats' (rat_0) - val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) - val scal1 = pow2 (20 - int_of_float(Math.ln (float_of_rat max1) / Math.ln 2.0)) - val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) - val mats'' = map (Inttriplefunc.map (fn _ => fn x => x */ scal1)) mats' - val obj'' = vector_cmul scal2 obj' - in solver obj'' mats'' - end +fun tri_scale_then solver (obj:vector) mats = + let + val cd1 = fold_rev (common_denominator Inttriplefunc.fold) mats (rat_1) + val cd2 = common_denominator FuncUtil.Intfunc.fold (snd obj) (rat_1) + val mats' = map (Inttriplefunc.map (fn _ => fn x => cd1 */ x)) mats + val obj' = vector_cmul cd2 obj + val max1 = fold_rev (maximal_element Inttriplefunc.fold) mats' (rat_0) + val max2 = maximal_element FuncUtil.Intfunc.fold (snd obj') (rat_0) + val scal1 = pow2 (20 - int_of_float(Math.ln (float_of_rat max1) / Math.ln 2.0)) + val scal2 = pow2 (20 - int_of_float(Math.ln (float_of_rat max2) / Math.ln 2.0)) + val mats'' = map (Inttriplefunc.map (fn _ => fn x => x */ scal1)) mats' + val obj'' = vector_cmul scal2 obj' + in solver obj'' mats'' end end; (* Round a vector to "nice" rationals. *) -fun nice_rational n x = round_rat (n */ x) // n;; +fun nice_rational n x = round_rat (n */ x) // n; fun nice_vector n ((d,v) : vector) = - (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a => - let val y = nice_rational n c - in if c =/ rat_0 then a - else FuncUtil.Intfunc.update (i,y) a end) v FuncUtil.Intfunc.empty):vector + (d, FuncUtil.Intfunc.fold (fn (i,c) => fn a => + let val y = nice_rational n c in + if c =/ rat_0 then a + else FuncUtil.Intfunc.update (i,y) a + end) v FuncUtil.Intfunc.empty): vector fun dest_ord f x = is_equal (f x); (* Stuff for "equations" ((int*int*int)->num functions). *) fun tri_equation_cmul c eq = - if c =/ rat_0 then Inttriplefunc.empty else Inttriplefunc.map (fn _ => fn d => c */ d) eq; + if c =/ rat_0 then Inttriplefunc.empty + else Inttriplefunc.map (fn _ => fn d => c */ d) eq; -fun tri_equation_add eq1 eq2 = Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2; +fun tri_equation_add eq1 eq2 = + Inttriplefunc.combine (curry op +/) (fn x => x =/ rat_0) eq1 eq2; fun tri_equation_eval assig eq = - let fun value v = Inttriplefunc.apply assig v - in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0 - end; + let + fun value v = Inttriplefunc.apply assig v + in Inttriplefunc.fold (fn (v, c) => fn a => a +/ value v */ c) eq rat_0 end; (* Eliminate all variables, in an essentially arbitrary order. *) fun tri_eliminate_all_equations one = - let - fun choose_variable eq = - let val (v,_) = Inttriplefunc.choose eq - in if is_equal (triple_int_ord(v,one)) then - let val eq' = Inttriplefunc.delete_safe v eq - in if Inttriplefunc.is_empty eq' then error "choose_variable" - else fst (Inttriplefunc.choose eq') + let + fun choose_variable eq = + let val (v,_) = Inttriplefunc.choose eq + in + if is_equal (triple_int_ord(v,one)) then + let + val eq' = Inttriplefunc.delete_safe v eq + in + if Inttriplefunc.is_empty eq' then error "choose_variable" + else fst (Inttriplefunc.choose eq') + end + else v end - else v - end - fun eliminate dun eqs = case eqs of - [] => dun - | eq::oeqs => - if Inttriplefunc.is_empty eq then eliminate dun oeqs else - let val v = choose_variable eq - val a = Inttriplefunc.apply eq v - val eq' = tri_equation_cmul ((Rat.rat_of_int ~1) // a) - (Inttriplefunc.delete_safe v eq) - fun elim e = - let val b = Inttriplefunc.tryapplyd e v rat_0 - in if b =/ rat_0 then e - else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq) - end - in eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map (K elim) dun)) - (map elim oeqs) - end -in fn eqs => - let - val assig = eliminate Inttriplefunc.empty eqs - val vs = Inttriplefunc.fold (fn (_, f) => fn a => remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] - in (distinct (dest_ord triple_int_ord) vs,assig) - end -end; + + fun eliminate dun eqs = + (case eqs of + [] => dun + | eq :: oeqs => + if Inttriplefunc.is_empty eq then eliminate dun oeqs + else + let + val v = choose_variable eq + val a = Inttriplefunc.apply eq v + val eq' = + tri_equation_cmul ((Rat.rat_of_int ~1) // a) (Inttriplefunc.delete_safe v eq) + fun elim e = + let val b = Inttriplefunc.tryapplyd e v rat_0 in + if b =/ rat_0 then e + else tri_equation_add e (tri_equation_cmul (Rat.neg b // a) eq) + end + in + eliminate (Inttriplefunc.update(v, eq') (Inttriplefunc.map (K elim) dun)) + (map elim oeqs) + end) + in + fn eqs => + let + val assig = eliminate Inttriplefunc.empty eqs + val vs = Inttriplefunc.fold (fn (_, f) => fn a => + remove (dest_ord triple_int_ord) one (Inttriplefunc.dom f) @ a) assig [] + in (distinct (dest_ord triple_int_ord) vs,assig) end + end; (* Multiply equation-parametrized poly by regular poly and add accumulator. *) fun tri_epoly_pmul p q acc = - FuncUtil.Monomialfunc.fold (fn (m1, c) => fn a => - FuncUtil.Monomialfunc.fold (fn (m2,e) => fn b => - let val m = monomial_mul m1 m2 - val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty - in FuncUtil.Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b - end) q a) p acc ; + FuncUtil.Monomialfunc.fold (fn (m1, c) => fn a => + FuncUtil.Monomialfunc.fold (fn (m2, e) => fn b => + let + val m = monomial_mul m1 m2 + val es = FuncUtil.Monomialfunc.tryapplyd b m Inttriplefunc.empty + in + FuncUtil.Monomialfunc.update (m,tri_equation_add (tri_equation_cmul c e) es) b + end) q a) p acc; (* Hence produce the "relevant" monomials: those whose squares lie in the *) (* Newton polytope of the monomials in the input. (This is enough according *) @@ -430,107 +472,124 @@ (* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *) local -fun diagonalize n i m = - if FuncUtil.Intpairfunc.is_empty (snd m) then [] - else - let val a11 = FuncUtil.Intpairfunc.tryapplyd (snd m) (i,i) rat_0 - in if a11 fn a => - let val y = c // a11 - in if y = rat_0 then a else FuncUtil.Intfunc.update (i,y) a - end) (snd v) FuncUtil.Intfunc.empty) - fun upt0 x y a = if y = rat_0 then a else FuncUtil.Intpairfunc.update (x,y) a - val m' = - ((n,n), - iter (i+1,n) (fn j => - iter (i+1,n) (fn k => - (upt0 (j,k) (FuncUtil.Intpairfunc.tryapplyd (snd m) (j,k) rat_0 -/ FuncUtil.Intfunc.tryapplyd (snd v) j rat_0 */ FuncUtil.Intfunc.tryapplyd (snd v') k rat_0)))) - FuncUtil.Intpairfunc.empty) - in (a11,v')::diagonalize n (i + 1) m' - end - end + let + val a11 = FuncUtil.Intpairfunc.tryapplyd (snd m) (i,i) rat_0 + in + if a11 fn a => + let val y = c // a11 + in if y = rat_0 then a else FuncUtil.Intfunc.update (i,y) a + end) (snd v) FuncUtil.Intfunc.empty) + fun upt0 x y a = + if y = rat_0 then a + else FuncUtil.Intpairfunc.update (x,y) a + val m' = + ((n, n), + iter (i + 1, n) (fn j => + iter (i + 1, n) (fn k => + (upt0 (j, k) + (FuncUtil.Intpairfunc.tryapplyd (snd m) (j, k) rat_0 -/ + FuncUtil.Intfunc.tryapplyd (snd v) j rat_0 */ + FuncUtil.Intfunc.tryapplyd (snd v') k rat_0)))) + FuncUtil.Intpairfunc.empty) + in (a11, v') :: diagonalize n (i + 1) m' end + end in -fun diag m = - let - val nn = dimensions m - val n = fst nn - in if snd nn <> n then error "diagonalize: non-square matrix" - else diagonalize n 1 m - end + fun diag m = + let + val nn = dimensions m + val n = fst nn + in + if snd nn <> n then error "diagonalize: non-square matrix" + else diagonalize n 1 m + end end; (* Enumeration of monomials with given multidegree bound. *) fun enumerate_monomials d vars = - if d < 0 then [] - else if d = 0 then [FuncUtil.Ctermfunc.empty] - else if null vars then [monomial_1] else - let val alts = - map_range (fn k => let val oths = enumerate_monomials (d - k) (tl vars) - in map (fn ks => if k = 0 then ks else FuncUtil.Ctermfunc.update (hd vars, k) ks) oths end) (d + 1) - in flat alts - end; + if d < 0 then [] + else if d = 0 then [FuncUtil.Ctermfunc.empty] + else if null vars then [monomial_1] + else + let val alts = + map_range (fn k => + let + val oths = enumerate_monomials (d - k) (tl vars) + in map (fn ks => if k = 0 then ks else FuncUtil.Ctermfunc.update (hd vars, k) ks) oths end) + (d + 1) + in flat alts end; (* Enumerate products of distinct input polys with degree <= d. *) (* We ignore any constant input polynomials. *) (* Give the output polynomial and a record of how it was derived. *) fun enumerate_products d pols = -if d = 0 then [(poly_const rat_1,RealArith.Rational_lt rat_1)] -else if d < 0 then [] else -case pols of - [] => [(poly_const rat_1,RealArith.Rational_lt rat_1)] - | (p,b)::ps => - let val e = multidegree p - in if e = 0 then enumerate_products d ps else - enumerate_products d ps @ - map (fn (q,c) => (poly_mul p q,RealArith.Product(b,c))) - (enumerate_products (d - e) ps) - end + if d = 0 then [(poly_const rat_1,RealArith.Rational_lt rat_1)] + else if d < 0 then [] + else + (case pols of + [] => [(poly_const rat_1, RealArith.Rational_lt rat_1)] + | (p, b) :: ps => + let val e = multidegree p in + if e = 0 then enumerate_products d ps + else + enumerate_products d ps @ + map (fn (q, c) => (poly_mul p q, RealArith.Product (b, c))) + (enumerate_products (d - e) ps) + end) (* Convert regular polynomial. Note that we treat (0,0,0) as -1. *) fun epoly_of_poly p = - FuncUtil.Monomialfunc.fold (fn (m,c) => fn a => FuncUtil.Monomialfunc.update (m, Inttriplefunc.onefunc ((0,0,0), Rat.neg c)) a) p FuncUtil.Monomialfunc.empty; + FuncUtil.Monomialfunc.fold (fn (m, c) => fn a => + FuncUtil.Monomialfunc.update (m, Inttriplefunc.onefunc ((0, 0, 0), Rat.neg c)) a) + p FuncUtil.Monomialfunc.empty; (* String for block diagonal matrix numbered k. *) fun sdpa_of_blockdiagonal k m = - let - val pfx = string_of_int k ^" " - val ents = - Inttriplefunc.fold - (fn ((b,i,j),c) => fn a => if i > j then a else ((b,i,j),c)::a) - m [] - val entss = sort (triple_int_ord o pairself fst) ents - in fold_rev (fn ((b,i,j),c) => fn a => - pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ - " " ^ decimalize 20 c ^ "\n" ^ a) entss "" - end; + let + val pfx = string_of_int k ^" " + val ents = + Inttriplefunc.fold + (fn ((b, i, j), c) => fn a => if i > j then a else ((b, i, j), c) :: a) + m [] + val entss = sort (triple_int_ord o pairself fst) ents + in + fold_rev (fn ((b,i,j),c) => fn a => + pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ + " " ^ decimalize 20 c ^ "\n" ^ a) entss "" + end; (* SDPA for problem using block diagonal (i.e. multiple SDPs) *) fun sdpa_of_blockproblem nblocks blocksizes obj mats = - let val m = length mats - 1 - in - string_of_int m ^ "\n" ^ - string_of_int nblocks ^ "\n" ^ - (space_implode " " (map string_of_int blocksizes)) ^ - "\n" ^ - sdpa_of_vector obj ^ - fold_rev2 (fn k => fn m => fn a => sdpa_of_blockdiagonal (k - 1) m ^ a) - (1 upto length mats) mats "" - end; + let val m = length mats - 1 + in + string_of_int m ^ "\n" ^ + string_of_int nblocks ^ "\n" ^ + (space_implode " " (map string_of_int blocksizes)) ^ + "\n" ^ + sdpa_of_vector obj ^ + fold_rev2 (fn k => fn m => fn a => sdpa_of_blockdiagonal (k - 1) m ^ a) + (1 upto length mats) mats "" + end; (* Run prover on a problem in block diagonal form. *) -fun run_blockproblem prover nblocks blocksizes obj mats= +fun run_blockproblem prover nblocks blocksizes obj mats = parse_csdpoutput (prover (sdpa_of_blockproblem nblocks blocksizes obj mats)) (* 3D versions of matrix operations to consider blocks separately. *) @@ -545,12 +604,16 @@ (* Smash a block matrix into components. *) fun blocks blocksizes bm = - map (fn (bs,b0) => - let val m = Inttriplefunc.fold - (fn ((b,i,j),c) => fn a => if b = b0 then FuncUtil.Intpairfunc.update ((i,j),c) a else a) bm FuncUtil.Intpairfunc.empty - val _ = FuncUtil.Intpairfunc.fold (fn ((i,j),_) => fn a => max a (max i j)) m 0 - in (((bs,bs),m):matrix) end) - (blocksizes ~~ (1 upto length blocksizes));; + map (fn (bs, b0) => + let + val m = + Inttriplefunc.fold + (fn ((b, i, j), c) => fn a => + if b = b0 then FuncUtil.Intpairfunc.update ((i, j), c) a else a) + bm FuncUtil.Intpairfunc.empty + val _ = FuncUtil.Intpairfunc.fold (fn ((i, j), _) => fn a => max a (max i j)) m 0 + in (((bs, bs), m): matrix) end) + (blocksizes ~~ (1 upto length blocksizes)); (* FIXME : Get rid of this !!!*) local @@ -562,117 +625,132 @@ (* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *) - fun real_positivnullstellensatz_general ctxt prover linf d eqs leqs pol = -let - val vars = fold_rev (union (op aconvc) o poly_variables) - (pol :: eqs @ map fst leqs) [] - val monoid = if linf then - (poly_const rat_1,RealArith.Rational_lt rat_1):: - (filter (fn (p,_) => multidegree p <= d) leqs) - else enumerate_products d leqs - val nblocks = length monoid - fun mk_idmultiplier k p = let - val e = d - multidegree p - val mons = enumerate_monomials e vars - val nons = mons ~~ (1 upto length mons) - in (mons, - fold_rev (fn (m,n) => FuncUtil.Monomialfunc.update(m,Inttriplefunc.onefunc((~k,~n,n),rat_1))) nons FuncUtil.Monomialfunc.empty) - end + val vars = + fold_rev (union (op aconvc) o poly_variables) + (pol :: eqs @ map fst leqs) [] + val monoid = + if linf then + (poly_const rat_1,RealArith.Rational_lt rat_1):: + (filter (fn (p,_) => multidegree p <= d) leqs) + else enumerate_products d leqs + val nblocks = length monoid + fun mk_idmultiplier k p = + let + val e = d - multidegree p + val mons = enumerate_monomials e vars + val nons = mons ~~ (1 upto length mons) + in + (mons, + fold_rev (fn (m, n) => + FuncUtil.Monomialfunc.update (m, Inttriplefunc.onefunc ((~k, ~n, n), rat_1))) + nons FuncUtil.Monomialfunc.empty) + end - fun mk_sqmultiplier k (p,_) = - let - val e = (d - multidegree p) div 2 - val mons = enumerate_monomials e vars - val nons = mons ~~ (1 upto length mons) - in (mons, - fold_rev (fn (m1,n1) => - fold_rev (fn (m2,n2) => fn a => - let val m = monomial_mul m1 m2 - in if n1 > n2 then a else - let val c = if n1 = n2 then rat_1 else rat_2 - val e = FuncUtil.Monomialfunc.tryapplyd a m Inttriplefunc.empty - in FuncUtil.Monomialfunc.update(m, tri_equation_add (Inttriplefunc.onefunc((k,n1,n2), c)) e) a - end - end) nons) - nons FuncUtil.Monomialfunc.empty) - end + fun mk_sqmultiplier k (p,_) = + let + val e = (d - multidegree p) div 2 + val mons = enumerate_monomials e vars + val nons = mons ~~ (1 upto length mons) + in + (mons, + fold_rev (fn (m1, n1) => + fold_rev (fn (m2, n2) => fn a => + let val m = monomial_mul m1 m2 in + if n1 > n2 then a + else + let + val c = if n1 = n2 then rat_1 else rat_2 + val e = FuncUtil.Monomialfunc.tryapplyd a m Inttriplefunc.empty + in + FuncUtil.Monomialfunc.update + (m, tri_equation_add (Inttriplefunc.onefunc ((k, n1, n2), c)) e) a + end + end) nons) nons FuncUtil.Monomialfunc.empty) + end - val (sqmonlist,sqs) = split_list (map2 mk_sqmultiplier (1 upto length monoid) monoid) - val (_(*idmonlist*),ids) = split_list(map2 mk_idmultiplier (1 upto length eqs) eqs) - val blocksizes = map length sqmonlist - val bigsum = - fold_rev2 (fn p => fn q => fn a => tri_epoly_pmul p q a) eqs ids - (fold_rev2 (fn (p,_) => fn s => fn a => tri_epoly_pmul p s a) monoid sqs - (epoly_of_poly(poly_neg pol))) - val eqns = FuncUtil.Monomialfunc.fold (fn (_,e) => fn a => e::a) bigsum [] - val (pvs,assig) = tri_eliminate_all_equations (0,0,0) eqns - val qvars = (0,0,0)::pvs - val allassig = fold_rev (fn v => Inttriplefunc.update(v,(Inttriplefunc.onefunc(v,rat_1)))) pvs assig - fun mk_matrix v = - Inttriplefunc.fold (fn ((b,i,j), ass) => fn m => - if b < 0 then m else - let val c = Inttriplefunc.tryapplyd ass v rat_0 - in if c = rat_0 then m else - Inttriplefunc.update ((b,j,i), c) (Inttriplefunc.update ((b,i,j), c) m) - end) - allassig Inttriplefunc.empty - val diagents = Inttriplefunc.fold - (fn ((b,i,j), e) => fn a => if b > 0 andalso i = j then tri_equation_add e a else a) - allassig Inttriplefunc.empty + val (sqmonlist,sqs) = split_list (map2 mk_sqmultiplier (1 upto length monoid) monoid) + val (_(*idmonlist*),ids) = split_list (map2 mk_idmultiplier (1 upto length eqs) eqs) + val blocksizes = map length sqmonlist + val bigsum = + fold_rev2 (fn p => fn q => fn a => tri_epoly_pmul p q a) eqs ids + (fold_rev2 (fn (p,_) => fn s => fn a => tri_epoly_pmul p s a) monoid sqs + (epoly_of_poly(poly_neg pol))) + val eqns = FuncUtil.Monomialfunc.fold (fn (_, e) => fn a => e :: a) bigsum [] + val (pvs, assig) = tri_eliminate_all_equations (0, 0, 0) eqns + val qvars = (0, 0, 0) :: pvs + val allassig = + fold_rev (fn v => Inttriplefunc.update (v, (Inttriplefunc.onefunc (v, rat_1)))) pvs assig + fun mk_matrix v = + Inttriplefunc.fold (fn ((b, i, j), ass) => fn m => + if b < 0 then m + else + let val c = Inttriplefunc.tryapplyd ass v rat_0 in + if c = rat_0 then m + else Inttriplefunc.update ((b, j, i), c) (Inttriplefunc.update ((b, i, j), c) m) + end) + allassig Inttriplefunc.empty + val diagents = + Inttriplefunc.fold + (fn ((b, i, j), e) => fn a => if b > 0 andalso i = j then tri_equation_add e a else a) + allassig Inttriplefunc.empty - val mats = map mk_matrix qvars - val obj = (length pvs, - itern 1 pvs (fn v => fn i => FuncUtil.Intfunc.updatep iszero (i,Inttriplefunc.tryapplyd diagents v rat_0)) - FuncUtil.Intfunc.empty) - val raw_vec = if null pvs then vector_0 0 - else tri_scale_then (run_blockproblem prover nblocks blocksizes) obj mats - fun int_element (_,v) i = FuncUtil.Intfunc.tryapplyd v i rat_0 + val mats = map mk_matrix qvars + val obj = + (length pvs, + itern 1 pvs (fn v => fn i => + FuncUtil.Intfunc.updatep iszero (i,Inttriplefunc.tryapplyd diagents v rat_0)) + FuncUtil.Intfunc.empty) + val raw_vec = + if null pvs then vector_0 0 + else tri_scale_then (run_blockproblem prover nblocks blocksizes) obj mats + fun int_element (_, v) i = FuncUtil.Intfunc.tryapplyd v i rat_0 - fun find_rounding d = - let - val _ = - if Config.get ctxt trace - then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") - else () - val vec = nice_vector d raw_vec - val blockmat = iter (1,dim vec) - (fn i => fn a => bmatrix_add (bmatrix_cmul (int_element vec i) (nth mats i)) a) - (bmatrix_neg (nth mats 0)) - val allmats = blocks blocksizes blockmat - in (vec,map diag allmats) - end - val (vec,ratdias) = - if null pvs then find_rounding rat_1 - else tryfind find_rounding (map Rat.rat_of_int (1 upto 31) @ - map pow2 (5 upto 66)) - val newassigs = - fold_rev (fn k => Inttriplefunc.update (nth pvs (k - 1), int_element vec k)) - (1 upto dim vec) (Inttriplefunc.onefunc ((0,0,0), Rat.rat_of_int ~1)) - val finalassigs = - Inttriplefunc.fold (fn (v,e) => fn a => Inttriplefunc.update(v, tri_equation_eval newassigs e) a) allassig newassigs - fun poly_of_epoly p = - FuncUtil.Monomialfunc.fold (fn (v,e) => fn a => FuncUtil.Monomialfunc.updatep iszero (v,tri_equation_eval finalassigs e) a) - p FuncUtil.Monomialfunc.empty - fun mk_sos mons = - let fun mk_sq (c,m) = - (c,fold_rev (fn k=> fn a => FuncUtil.Monomialfunc.updatep iszero (nth mons (k - 1), int_element m k) a) - (1 upto length mons) FuncUtil.Monomialfunc.empty) - in map mk_sq - end - val sqs = map2 mk_sos sqmonlist ratdias - val cfs = map poly_of_epoly ids - val msq = filter (fn (_,b) => not (null b)) (map2 pair monoid sqs) - fun eval_sq sqs = fold_rev (fn (c,q) => poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 - val sanity = - fold_rev (fn ((p,_),s) => poly_add (poly_mul p (eval_sq s))) msq - (fold_rev2 (fn p => fn q => poly_add (poly_mul p q)) cfs eqs - (poly_neg pol)) - -in if not(FuncUtil.Monomialfunc.is_empty sanity) then raise Sanity else - (cfs,map (fn (a,b) => (snd a,b)) msq) - end + fun find_rounding d = + let + val _ = + if Config.get ctxt trace + then writeln ("Trying rounding with limit "^Rat.string_of_rat d ^ "\n") + else () + val vec = nice_vector d raw_vec + val blockmat = + iter (1, dim vec) + (fn i => fn a => bmatrix_add (bmatrix_cmul (int_element vec i) (nth mats i)) a) + (bmatrix_neg (nth mats 0)) + val allmats = blocks blocksizes blockmat + in (vec, map diag allmats) end + val (vec, ratdias) = + if null pvs then find_rounding rat_1 + else tryfind find_rounding (map Rat.rat_of_int (1 upto 31) @ map pow2 (5 upto 66)) + val newassigs = + fold_rev (fn k => Inttriplefunc.update (nth pvs (k - 1), int_element vec k)) + (1 upto dim vec) (Inttriplefunc.onefunc ((0, 0, 0), Rat.rat_of_int ~1)) + val finalassigs = + Inttriplefunc.fold (fn (v, e) => fn a => + Inttriplefunc.update (v, tri_equation_eval newassigs e) a) allassig newassigs + fun poly_of_epoly p = + FuncUtil.Monomialfunc.fold (fn (v, e) => fn a => + FuncUtil.Monomialfunc.updatep iszero (v, tri_equation_eval finalassigs e) a) + p FuncUtil.Monomialfunc.empty + fun mk_sos mons = + let + fun mk_sq (c, m) = + (c, fold_rev (fn k => fn a => + FuncUtil.Monomialfunc.updatep iszero (nth mons (k - 1), int_element m k) a) + (1 upto length mons) FuncUtil.Monomialfunc.empty) + in map mk_sq end + val sqs = map2 mk_sos sqmonlist ratdias + val cfs = map poly_of_epoly ids + val msq = filter (fn (_, b) => not (null b)) (map2 pair monoid sqs) + fun eval_sq sqs = fold_rev (fn (c, q) => poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 + val sanity = + fold_rev (fn ((p, _), s) => poly_add (poly_mul p (eval_sq s))) msq + (fold_rev2 (fn p => fn q => poly_add (poly_mul p q)) cfs eqs (poly_neg pol)) + in + if not(FuncUtil.Monomialfunc.is_empty sanity) then raise Sanity + else (cfs, map (fn (a, b) => (snd a, b)) msq) + end (* Iterative deepening. *) @@ -684,10 +762,11 @@ (* Map back polynomials and their composites to a positivstellensatz. *) -fun cterm_of_sqterm (c,p) = RealArith.Product(RealArith.Rational_lt c,RealArith.Square p); +fun cterm_of_sqterm (c, p) = RealArith.Product (RealArith.Rational_lt c, RealArith.Square p); -fun cterm_of_sos (pr,sqs) = if null sqs then pr - else RealArith.Product(pr,foldr1 RealArith.Sum (map cterm_of_sqterm sqs)); +fun cterm_of_sos (pr,sqs) = + if null sqs then pr + else RealArith.Product (pr, foldr1 RealArith.Sum (map cterm_of_sqterm sqs)); (* Interface to HOL. *) local @@ -695,169 +774,189 @@ val concl = Thm.dest_arg o cprop_of fun simple_cterm_ord t u = Term_Ord.fast_term_ord (term_of t, term_of u) = LESS in - (* FIXME: Replace tryfind by get_first !! *) +(* FIXME: Replace tryfind by get_first !! *) fun real_nonlinear_prover proof_method ctxt = - let - val {add = _, mul = _, neg = _, pow = _, - sub = _, main = real_poly_conv} = - Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt - (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) - simple_cterm_ord - fun mainf cert_choice translator (eqs,les,lts) = let - val eq0 = map (poly_of_term o Thm.dest_arg1 o concl) eqs - val le0 = map (poly_of_term o Thm.dest_arg o concl) les - val lt0 = map (poly_of_term o Thm.dest_arg o concl) lts - val eqp0 = map_index (fn (i, t) => (t,RealArith.Axiom_eq i)) eq0 - val lep0 = map_index (fn (i, t) => (t,RealArith.Axiom_le i)) le0 - val ltp0 = map_index (fn (i, t) => (t,RealArith.Axiom_lt i)) lt0 - val (keq,eq) = List.partition (fn (p,_) => multidegree p = 0) eqp0 - val (klep,lep) = List.partition (fn (p,_) => multidegree p = 0) lep0 - val (kltp,ltp) = List.partition (fn (p,_) => multidegree p = 0) ltp0 - fun trivial_axiom (p,ax) = - case ax of - RealArith.Axiom_eq n => if eval FuncUtil.Ctermfunc.empty p <>/ Rat.zero then nth eqs n - else raise Failure "trivial_axiom: Not a trivial axiom" - | RealArith.Axiom_le n => if eval FuncUtil.Ctermfunc.empty p if eval FuncUtil.Ctermfunc.empty p <=/ Rat.zero then nth lts n - else raise Failure "trivial_axiom: Not a trivial axiom" - | _ => error "trivial_axiom: Not a trivial axiom" - in - (let val th = tryfind trivial_axiom (keq @ klep @ kltp) - in - (fconv_rule (arg_conv (arg1_conv (real_poly_conv ctxt)) - then_conv Numeral_Simprocs.field_comp_conv ctxt) th, - RealArith.Trivial) - end) - handle Failure _ => - (let val proof = - (case proof_method of Certificate certs => - (* choose certificate *) - let - fun chose_cert [] (RealArith.Cert c) = c - | chose_cert (RealArith.Left::s) (RealArith.Branch (l, _)) = chose_cert s l - | chose_cert (RealArith.Right::s) (RealArith.Branch (_, r)) = chose_cert s r - | chose_cert _ _ = error "certificate tree in invalid form" - in - chose_cert cert_choice certs - end - | Prover prover => - (* call prover *) - let - val pol = fold_rev poly_mul (map fst ltp) (poly_const Rat.one) - val leq = lep @ ltp - fun tryall d = - let val e = multidegree pol - val k = if e = 0 then 0 else d div e - val eq' = map fst eq - in tryfind (fn i => (d,i,real_positivnullstellensatz_general ctxt prover false d eq' leq - (poly_neg(poly_pow pol i)))) - (0 upto k) - end - val (_,i,(cert_ideal,cert_cone)) = deepen tryall 0 - val proofs_ideal = - map2 (fn q => fn (_,ax) => RealArith.Eqmul(q,ax)) cert_ideal eq - val proofs_cone = map cterm_of_sos cert_cone - val proof_ne = if null ltp then RealArith.Rational_lt Rat.one else - let val p = foldr1 RealArith.Product (map snd ltp) - in funpow i (fn q => RealArith.Product(p,q)) (RealArith.Rational_lt Rat.one) - end - in - foldr1 RealArith.Sum (proof_ne :: proofs_ideal @ proofs_cone) - end) - in - (translator (eqs,les,lts) proof, RealArith.Cert proof) - end) - end - in mainf end + val {add = _, mul = _, neg = _, pow = _, sub = _, main = real_poly_conv} = + Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt + (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) + simple_cterm_ord + fun mainf cert_choice translator (eqs, les, lts) = + let + val eq0 = map (poly_of_term o Thm.dest_arg1 o concl) eqs + val le0 = map (poly_of_term o Thm.dest_arg o concl) les + val lt0 = map (poly_of_term o Thm.dest_arg o concl) lts + val eqp0 = map_index (fn (i, t) => (t,RealArith.Axiom_eq i)) eq0 + val lep0 = map_index (fn (i, t) => (t,RealArith.Axiom_le i)) le0 + val ltp0 = map_index (fn (i, t) => (t,RealArith.Axiom_lt i)) lt0 + val (keq,eq) = List.partition (fn (p, _) => multidegree p = 0) eqp0 + val (klep,lep) = List.partition (fn (p, _) => multidegree p = 0) lep0 + val (kltp,ltp) = List.partition (fn (p, _) => multidegree p = 0) ltp0 + fun trivial_axiom (p, ax) = + (case ax of + RealArith.Axiom_eq n => + if eval FuncUtil.Ctermfunc.empty p <>/ Rat.zero then nth eqs n + else raise Failure "trivial_axiom: Not a trivial axiom" + | RealArith.Axiom_le n => + if eval FuncUtil.Ctermfunc.empty p + if eval FuncUtil.Ctermfunc.empty p <=/ Rat.zero then nth lts n + else raise Failure "trivial_axiom: Not a trivial axiom" + | _ => error "trivial_axiom: Not a trivial axiom") + in + let val th = tryfind trivial_axiom (keq @ klep @ kltp) in + (fconv_rule (arg_conv (arg1_conv (real_poly_conv ctxt)) + then_conv Numeral_Simprocs.field_comp_conv ctxt) th, + RealArith.Trivial) + end handle Failure _ => + let + val proof = + (case proof_method of + Certificate certs => + (* choose certificate *) + let + fun chose_cert [] (RealArith.Cert c) = c + | chose_cert (RealArith.Left::s) (RealArith.Branch (l, _)) = chose_cert s l + | chose_cert (RealArith.Right::s) (RealArith.Branch (_, r)) = chose_cert s r + | chose_cert _ _ = error "certificate tree in invalid form" + in + chose_cert cert_choice certs + end + | Prover prover => + (* call prover *) + let + val pol = fold_rev poly_mul (map fst ltp) (poly_const Rat.one) + val leq = lep @ ltp + fun tryall d = + let + val e = multidegree pol + val k = if e = 0 then 0 else d div e + val eq' = map fst eq + in + tryfind (fn i => + (d, i, real_positivnullstellensatz_general ctxt prover false d eq' leq + (poly_neg(poly_pow pol i)))) + (0 upto k) + end + val (_,i,(cert_ideal,cert_cone)) = deepen tryall 0 + val proofs_ideal = + map2 (fn q => fn (_,ax) => RealArith.Eqmul(q,ax)) cert_ideal eq + val proofs_cone = map cterm_of_sos cert_cone + val proof_ne = + if null ltp then RealArith.Rational_lt Rat.one + else + let val p = foldr1 RealArith.Product (map snd ltp) in + funpow i (fn q => RealArith.Product (p, q)) + (RealArith.Rational_lt Rat.one) + end + in + foldr1 RealArith.Sum (proof_ne :: proofs_ideal @ proofs_cone) + end) + in + (translator (eqs,les,lts) proof, RealArith.Cert proof) + end + end + in mainf end end fun C f x y = f y x; - (* FIXME : This is very bad!!!*) +(* FIXME : This is very bad!!!*) fun subst_conv eqs t = - let - val t' = fold (Thm.lambda o Thm.lhs_of) eqs t - in Conv.fconv_rule (Thm.beta_conversion true) (fold (C Thm.combination) eqs (Thm.reflexive t')) - end + let + val t' = fold (Thm.lambda o Thm.lhs_of) eqs t + in + Conv.fconv_rule (Thm.beta_conversion true) (fold (C Thm.combination) eqs (Thm.reflexive t')) + end (* A wrapper that tries to substitute away variables first. *) local - open Conv + open Conv fun simple_cterm_ord t u = Term_Ord.fast_term_ord (term_of t, term_of u) = LESS - val concl = Thm.dest_arg o cprop_of - val shuffle1 = - fconv_rule (rewr_conv @{lemma "(a + x == y) == (x == y - (a::real))" by (atomize (full)) (simp add: field_simps) }) - val shuffle2 = - fconv_rule (rewr_conv @{lemma "(x + a == y) == (x == y - (a::real))" by (atomize (full)) (simp add: field_simps)}) - fun substitutable_monomial fvs tm = case term_of tm of - Free(_,@{typ real}) => if not (member (op aconvc) fvs tm) then (Rat.one,tm) - else raise Failure "substitutable_monomial" - | @{term "op * :: real => _"}$_$(Free _) => - if RealArith.is_ratconst (Thm.dest_arg1 tm) andalso not (member (op aconvc) fvs (Thm.dest_arg tm)) - then (RealArith.dest_ratconst (Thm.dest_arg1 tm),Thm.dest_arg tm) else raise Failure "substitutable_monomial" - | @{term "op + :: real => _"}$_$_ => - (substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg tm) fvs) (Thm.dest_arg1 tm) - handle Failure _ => substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg1 tm) fvs) (Thm.dest_arg tm)) - | _ => raise Failure "substitutable_monomial" + val concl = Thm.dest_arg o cprop_of + val shuffle1 = + fconv_rule (rewr_conv @{lemma "(a + x == y) == (x == y - (a::real))" + by (atomize (full)) (simp add: field_simps)}) + val shuffle2 = + fconv_rule (rewr_conv @{lemma "(x + a == y) == (x == y - (a::real))" + by (atomize (full)) (simp add: field_simps)}) + fun substitutable_monomial fvs tm = + (case term_of tm of + Free (_, @{typ real}) => + if not (member (op aconvc) fvs tm) then (Rat.one, tm) + else raise Failure "substitutable_monomial" + | @{term "op * :: real => _"} $ _ $ (Free _) => + if RealArith.is_ratconst (Thm.dest_arg1 tm) andalso + not (member (op aconvc) fvs (Thm.dest_arg tm)) + then (RealArith.dest_ratconst (Thm.dest_arg1 tm), Thm.dest_arg tm) + else raise Failure "substitutable_monomial" + | @{term "op + :: real => _"}$_$_ => + (substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg tm) fvs) (Thm.dest_arg1 tm) + handle Failure _ => + substitutable_monomial (Thm.add_cterm_frees (Thm.dest_arg1 tm) fvs) (Thm.dest_arg tm)) + | _ => raise Failure "substitutable_monomial") fun isolate_variable v th = - let val w = Thm.dest_arg1 (cprop_of th) - in if v aconvc w then th - else case term_of w of - @{term "op + :: real => _"}$_$_ => - if Thm.dest_arg1 w aconvc v then shuffle2 th - else isolate_variable v (shuffle1 th) - | _ => error "isolate variable : This should not happen?" + let + val w = Thm.dest_arg1 (cprop_of th) + in + if v aconvc w then th + else + (case term_of w of + @{term "op + :: real => _"} $ _ $ _ => + if Thm.dest_arg1 w aconvc v then shuffle2 th + else isolate_variable v (shuffle1 th) + | _ => error "isolate variable : This should not happen?") end in fun real_nonlinear_subst_prover prover ctxt = - let - val {add = _, mul = real_poly_mul_conv, neg = _, - pow = _, sub = _, main = real_poly_conv} = + let + val {add = _, mul = real_poly_mul_conv, neg = _, pow = _, sub = _, main = real_poly_conv} = Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt - (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) - simple_cterm_ord + (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) + simple_cterm_ord + + fun make_substitution th = + let + val (c,v) = substitutable_monomial [] (Thm.dest_arg1(concl th)) + val th1 = + Drule.arg_cong_rule + (Thm.apply @{cterm "op * :: real => _"} (RealArith.cterm_of_rat (Rat.inv c))) + (mk_meta_eq th) + val th2 = fconv_rule (binop_conv (real_poly_mul_conv ctxt)) th1 + in fconv_rule (arg_conv (real_poly_conv ctxt)) (isolate_variable v th2) end - fun make_substitution th = - let - val (c,v) = substitutable_monomial [] (Thm.dest_arg1(concl th)) - val th1 = Drule.arg_cong_rule (Thm.apply @{cterm "op * :: real => _"} (RealArith.cterm_of_rat (Rat.inv c))) (mk_meta_eq th) - val th2 = fconv_rule (binop_conv (real_poly_mul_conv ctxt)) th1 - in fconv_rule (arg_conv (real_poly_conv ctxt)) (isolate_variable v th2) - end - fun oprconv cv ct = - let val g = Thm.dest_fun2 ct - in if g aconvc @{cterm "op <= :: real => _"} - orelse g aconvc @{cterm "op < :: real => _"} - then arg_conv cv ct else arg1_conv cv ct - end - fun mainf cert_choice translator = - let - fun substfirst(eqs,les,lts) = - ((let - val eth = tryfind make_substitution eqs - val modify = - fconv_rule (arg_conv (oprconv(subst_conv [eth] then_conv (real_poly_conv ctxt)))) - in substfirst - (filter_out (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t - aconvc @{cterm "0::real"}) (map modify eqs), - map modify les,map modify lts) - end) - handle Failure _ => real_nonlinear_prover prover ctxt cert_choice translator (rev eqs, rev les, rev lts)) - in substfirst - end - - - in mainf - end + fun oprconv cv ct = + let val g = Thm.dest_fun2 ct in + if g aconvc @{cterm "op <= :: real => _"} orelse g aconvc @{cterm "op < :: real => _"} + then arg_conv cv ct else arg1_conv cv ct + end + fun mainf cert_choice translator = + let + fun substfirst (eqs, les, lts) = + (let + val eth = tryfind make_substitution eqs + val modify = + fconv_rule (arg_conv (oprconv(subst_conv [eth] then_conv (real_poly_conv ctxt)))) + in + substfirst + (filter_out + (fn t => (Thm.dest_arg1 o Thm.dest_arg o cprop_of) t aconvc @{cterm "0::real"}) + (map modify eqs), + map modify les, + map modify lts) + end handle Failure _ => + real_nonlinear_prover prover ctxt cert_choice translator (rev eqs, rev les, rev lts)) + in substfirst end + in mainf end (* Overall function. *) fun real_sos prover ctxt = RealArith.gen_prover_real_arith ctxt (real_nonlinear_subst_prover prover ctxt) + end; val known_sos_constants = @@ -878,28 +977,34 @@ @{term "Num.Bit0"}, @{term "Num.Bit1"}, @{term "Num.One"}]; fun check_sos kcts ct = - let - val t = term_of ct - val _ = if not (null (Term.add_tfrees t []) - andalso null (Term.add_tvars t [])) - then error "SOS: not sos. Additional type varables" else () - val fs = Term.add_frees t [] - val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) fs - then error "SOS: not sos. Variables with type not real" else () - val vs = Term.add_vars t [] - val _ = if exists (fn ((_,T)) => not (T = @{typ "real"})) vs - then error "SOS: not sos. Variables with type not real" else () - val ukcs = subtract (fn (t,p) => Const p aconv t) kcts (Term.add_consts t []) - val _ = if null ukcs then () - else error ("SOSO: Unknown constants in Subgoal:" ^ commas (map fst ukcs)) -in () end + let + val t = term_of ct + val _ = + if not (null (Term.add_tfrees t []) andalso null (Term.add_tvars t [])) + then error "SOS: not sos. Additional type varables" + else () + val fs = Term.add_frees t [] + val _ = + if exists (fn ((_,T)) => not (T = @{typ "real"})) fs + then error "SOS: not sos. Variables with type not real" + else () + val vs = Term.add_vars t [] + val _ = + if exists (fn ((_,T)) => not (T = @{typ "real"})) vs + then error "SOS: not sos. Variables with type not real" + else () + val ukcs = subtract (fn (t,p) => Const p aconv t) kcts (Term.add_consts t []) + val _ = + if null ukcs then () + else error ("SOSO: Unknown constants in Subgoal:" ^ commas (map fst ukcs)) + in () end fun core_sos_tac print_cert prover = SUBPROOF (fn {concl, context, ...} => let val _ = check_sos known_sos_constants concl val (ths, certificates) = real_sos prover context (Thm.dest_arg concl) val _ = print_cert certificates - in rtac ths 1 end) + in rtac ths 1 end); fun default_SOME _ NONE v = SOME v | default_SOME _ (SOME v) _ = SOME v; @@ -909,31 +1014,35 @@ local - val is_numeral = can (HOLogic.dest_number o term_of) + val is_numeral = can (HOLogic.dest_number o term_of) in -fun get_denom b ct = case term_of ct of - @{term "op / :: real => _"} $ _ $ _ => - if is_numeral (Thm.dest_arg ct) then get_denom b (Thm.dest_arg1 ct) - else default_SOME (get_denom b) (get_denom b (Thm.dest_arg ct)) (Thm.dest_arg ct, b) - | @{term "op < :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct) - | @{term "op <= :: real => _"} $ _ $ _ => lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct) - | _ $ _ => lift_SOME (get_denom b) (get_denom b (Thm.dest_fun ct)) (Thm.dest_arg ct) - | _ => NONE + fun get_denom b ct = + (case term_of ct of + @{term "op / :: real => _"} $ _ $ _ => + if is_numeral (Thm.dest_arg ct) + then get_denom b (Thm.dest_arg1 ct) + else default_SOME (get_denom b) (get_denom b (Thm.dest_arg ct)) (Thm.dest_arg ct, b) + | @{term "op < :: real => _"} $ _ $ _ => + lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct) + | @{term "op <= :: real => _"} $ _ $ _ => + lift_SOME (get_denom true) (get_denom true (Thm.dest_arg ct)) (Thm.dest_arg1 ct) + | _ $ _ => lift_SOME (get_denom b) (get_denom b (Thm.dest_fun ct)) (Thm.dest_arg ct) + | _ => NONE) end; -fun elim_one_denom_tac ctxt = -CSUBGOAL (fn (P,i) => - case get_denom false P of - NONE => no_tac - | SOME (d,ord) => - let - val simp_ctxt = - ctxt addsimps @{thms field_simps} - addsimps [@{thm nonzero_power_divide}, @{thm power_divide}] - val th = instantiate' [] [SOME d, SOME (Thm.dest_arg P)] - (if ord then @{lemma "(d=0 --> P) & (d>0 --> P) & (d<(0::real) --> P) ==> P" by auto} - else @{lemma "(d=0 --> P) & (d ~= (0::real) --> P) ==> P" by blast}) - in rtac th i THEN Simplifier.asm_full_simp_tac simp_ctxt i end); +fun elim_one_denom_tac ctxt = CSUBGOAL (fn (P, i) => + (case get_denom false P of + NONE => no_tac + | SOME (d, ord) => + let + val simp_ctxt = + ctxt addsimps @{thms field_simps} + addsimps [@{thm nonzero_power_divide}, @{thm power_divide}] + val th = + instantiate' [] [SOME d, SOME (Thm.dest_arg P)] + (if ord then @{lemma "(d=0 --> P) & (d>0 --> P) & (d<(0::real) --> P) ==> P" by auto} + else @{lemma "(d=0 --> P) & (d ~= (0::real) --> P) ==> P" by blast}) + in rtac th i THEN Simplifier.asm_full_simp_tac simp_ctxt i end)); fun elim_denom_tac ctxt i = REPEAT (elim_one_denom_tac ctxt i);