# HG changeset patch # User hoelzl # Date 1269357524 -3600 # Node ID 90f38c8831e2b65f9ddbaa334d492a591882911d # Parent d31f55f976631fcc4511cfb3832dd2fa79c81a96 Unhide measure_space.positive defined in Caratheodory. diff -r d31f55f97663 -r 90f38c8831e2 src/HOL/Probability/Probability_Space.thy --- a/src/HOL/Probability/Probability_Space.thy Tue Mar 23 16:17:41 2010 +0100 +++ b/src/HOL/Probability/Probability_Space.thy Tue Mar 23 16:18:44 2010 +0100 @@ -38,7 +38,7 @@ definition "conditional_prob e1 e2 \ conditional_expectation (indicator_fn e1) e2" -lemma positive: "positive M prob" +lemma positive': "positive M prob" unfolding positive_def using positive empty_measure by blast lemma prob_compl: @@ -60,7 +60,7 @@ lemma prob_space_increasing: "increasing M prob" -by (rule additive_increasing[OF positive additive]) +by (rule additive_increasing[OF positive' additive]) lemma prob_subadditive: assumes "s \ events" "t \ events" @@ -167,7 +167,7 @@ assms rf' unfolding f'_def by blast hence absinc: "\ i. \ prob (f' i) \ \ prob (f i)" - using abs_of_nonneg positive[unfolded positive_def] + using abs_of_nonneg positive'[unfolded positive_def] assms rf' by auto have "prob (\ i. f i) = prob (\ i. f' i)" using uf'f by simp @@ -192,7 +192,7 @@ using assms proof - have leq0: "0 \ prob (\ i. c i)" - using assms positive[unfolded positive_def, rule_format] + using assms positive'[unfolded positive_def, rule_format] by auto have "prob (\ i. c i) \ (\ i. prob (c i))" @@ -285,7 +285,7 @@ have pos: "\ e. e \ sets s \ distribution X e \ 0" unfolding distribution_def - using positive[unfolded positive_def] + using positive'[unfolded positive_def] assms[unfolded measurable_def] by auto have cas: "countably_additive ?N (distribution X)" @@ -366,7 +366,7 @@ let "?M" = "\ space = ((X ` (space M)) \ (Y ` (space M))), sets = Pow ((X ` (space M)) \ (Y ` (space M)))\" have pos: "positive ?S (\a. prob ((\x. (X x,Y x)) -` a \ space M))" - unfolding positive_def using positive[unfolded positive_def] assms by auto + unfolding positive_def using positive'[unfolded positive_def] assms by auto { fix x y have A: "((\x. (X x, Y x)) -` x) \ space M \ sets M" using assms by auto have B: "((\x. (X x, Y x)) -` y) \ space M \ sets M" using assms by auto @@ -397,7 +397,7 @@ proof - let "?S" = "\ space = s1 \ s2, sets = Pow (s1 \ s2) \" let "?M" = "\ space = s1 \ s2, sets = Pow (s1 \ s2), measure = joint_distribution X Y \" - have pos: "positive ?S (joint_distribution X Y)" using positive + have pos: "positive ?S (joint_distribution X Y)" using positive' unfolding positive_def joint_distribution_def using assms by auto { fix x y have A: "((\x. (X x, Y x)) -` x) \ space M \ sets M" using assms by auto