# HG changeset patch # User hoelzl # Date 1366878956 -7200 # Node ID 916271d524668c2eed3ab83441b4629c0d444c7c # Parent 9328c6681f3cbdbf652b3e7198f7215a8ec09a42 renamed linear_continuum_topology to connected_linorder_topology (and mention in NEWS) diff -r 9328c6681f3c -r 916271d52466 NEWS --- a/NEWS Wed Apr 24 13:28:30 2013 +0200 +++ b/NEWS Thu Apr 25 10:35:56 2013 +0200 @@ -133,7 +133,8 @@ - connected from Multivariate_Analysis. Use it to prove the intermediate value theorem. Show connectedness of intervals on order - topologies which are a inner dense, conditionally-complete linorder. + topologies which are a inner dense, conditionally-complete linorder + (named connected_linorder_topology). - first_countable_topology from Multivariate_Analysis. Is used to show equivalence of properties on the neighbourhood filter of x and on diff -r 9328c6681f3c -r 916271d52466 src/HOL/Library/Extended_Real.thy --- a/src/HOL/Library/Extended_Real.thy Wed Apr 24 13:28:30 2013 +0200 +++ b/src/HOL/Library/Extended_Real.thy Thu Apr 25 10:35:56 2013 +0200 @@ -1572,7 +1572,7 @@ subsubsection "Topological space" -instantiation ereal :: linorder_topology +instantiation ereal :: connected_linorder_topology begin definition "open_ereal" :: "ereal set \ bool" where diff -r 9328c6681f3c -r 916271d52466 src/HOL/Real_Vector_Spaces.thy --- a/src/HOL/Real_Vector_Spaces.thy Wed Apr 24 13:28:30 2013 +0200 +++ b/src/HOL/Real_Vector_Spaces.thy Thu Apr 25 10:35:56 2013 +0200 @@ -860,7 +860,7 @@ qed qed -instance real :: linear_continuum_topology .. +instance real :: connected_linorder_topology .. lemmas open_real_greaterThan = open_greaterThan[where 'a=real] lemmas open_real_lessThan = open_lessThan[where 'a=real] diff -r 9328c6681f3c -r 916271d52466 src/HOL/Topological_Spaces.thy --- a/src/HOL/Topological_Spaces.thy Wed Apr 24 13:28:30 2013 +0200 +++ b/src/HOL/Topological_Spaces.thy Thu Apr 25 10:35:56 2013 +0200 @@ -2079,7 +2079,7 @@ section {* Connectedness *} -class linear_continuum_topology = linorder_topology + conditionally_complete_linorder + inner_dense_linorder +class connected_linorder_topology = linorder_topology + conditionally_complete_linorder + inner_dense_linorder begin lemma Inf_notin_open: @@ -2111,7 +2111,7 @@ end lemma connectedI_interval: - fixes U :: "'a :: linear_continuum_topology set" + fixes U :: "'a :: connected_linorder_topology set" assumes *: "\x y z. x \ U \ y \ U \ x \ z \ z \ y \ z \ U" shows "connected U" proof (rule connectedI) @@ -2154,35 +2154,35 @@ qed lemma connected_iff_interval: - fixes U :: "'a :: linear_continuum_topology set" + fixes U :: "'a :: connected_linorder_topology set" shows "connected U \ (\x\U. \y\U. \z. x \ z \ z \ y \ z \ U)" by (auto intro: connectedI_interval dest: connectedD_interval) -lemma connected_UNIV[simp]: "connected (UNIV::'a::linear_continuum_topology set)" +lemma connected_UNIV[simp]: "connected (UNIV::'a::connected_linorder_topology set)" unfolding connected_iff_interval by auto -lemma connected_Ioi[simp]: "connected {a::'a::linear_continuum_topology <..}" +lemma connected_Ioi[simp]: "connected {a::'a::connected_linorder_topology <..}" unfolding connected_iff_interval by auto -lemma connected_Ici[simp]: "connected {a::'a::linear_continuum_topology ..}" +lemma connected_Ici[simp]: "connected {a::'a::connected_linorder_topology ..}" unfolding connected_iff_interval by auto -lemma connected_Iio[simp]: "connected {..< a::'a::linear_continuum_topology}" +lemma connected_Iio[simp]: "connected {..< a::'a::connected_linorder_topology}" unfolding connected_iff_interval by auto -lemma connected_Iic[simp]: "connected {.. a::'a::linear_continuum_topology}" +lemma connected_Iic[simp]: "connected {.. a::'a::connected_linorder_topology}" unfolding connected_iff_interval by auto -lemma connected_Ioo[simp]: "connected {a <..< b::'a::linear_continuum_topology}" +lemma connected_Ioo[simp]: "connected {a <..< b::'a::connected_linorder_topology}" unfolding connected_iff_interval by auto -lemma connected_Ioc[simp]: "connected {a <.. b::'a::linear_continuum_topology}" +lemma connected_Ioc[simp]: "connected {a <.. b::'a::connected_linorder_topology}" unfolding connected_iff_interval by auto -lemma connected_Ico[simp]: "connected {a ..< b::'a::linear_continuum_topology}" +lemma connected_Ico[simp]: "connected {a ..< b::'a::connected_linorder_topology}" unfolding connected_iff_interval by auto -lemma connected_Icc[simp]: "connected {a .. b::'a::linear_continuum_topology}" +lemma connected_Icc[simp]: "connected {a .. b::'a::connected_linorder_topology}" unfolding connected_iff_interval by auto lemma connected_contains_Ioo: @@ -2193,7 +2193,7 @@ subsection {* Intermediate Value Theorem *} lemma IVT': - fixes f :: "'a :: linear_continuum_topology \ 'b :: linorder_topology" + fixes f :: "'a :: connected_linorder_topology \ 'b :: linorder_topology" assumes y: "f a \ y" "y \ f b" "a \ b" assumes *: "continuous_on {a .. b} f" shows "\x. a \ x \ x \ b \ f x = y" @@ -2206,7 +2206,7 @@ qed lemma IVT2': - fixes f :: "'a :: linear_continuum_topology \ 'b :: linorder_topology" + fixes f :: "'a :: connected_linorder_topology \ 'b :: linorder_topology" assumes y: "f b \ y" "y \ f a" "a \ b" assumes *: "continuous_on {a .. b} f" shows "\x. a \ x \ x \ b \ f x = y" @@ -2219,17 +2219,17 @@ qed lemma IVT: - fixes f :: "'a :: linear_continuum_topology \ 'b :: linorder_topology" + fixes f :: "'a :: connected_linorder_topology \ 'b :: linorder_topology" shows "f a \ y \ y \ f b \ a \ b \ (\x. a \ x \ x \ b \ isCont f x) \ \x. a \ x \ x \ b \ f x = y" by (rule IVT') (auto intro: continuous_at_imp_continuous_on) lemma IVT2: - fixes f :: "'a :: linear_continuum_topology \ 'b :: linorder_topology" + fixes f :: "'a :: connected_linorder_topology \ 'b :: linorder_topology" shows "f b \ y \ y \ f a \ a \ b \ (\x. a \ x \ x \ b \ isCont f x) \ \x. a \ x \ x \ b \ f x = y" by (rule IVT2') (auto intro: continuous_at_imp_continuous_on) lemma continuous_inj_imp_mono: - fixes f :: "'a::linear_continuum_topology \ 'b :: linorder_topology" + fixes f :: "'a::connected_linorder_topology \ 'b :: linorder_topology" assumes x: "a < x" "x < b" assumes cont: "continuous_on {a..b} f" assumes inj: "inj_on f {a..b}"