# HG changeset patch # User hoelzl # Date 1397029067 -7200 # Node ID 91958d4b30f7581744162ccac0085bea610f24cf # Parent 92345da2349f86ae449c013c5f08da2333f5bce1 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Complex.thy --- a/src/HOL/Complex.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Complex.thy Wed Apr 09 09:37:47 2014 +0200 @@ -145,7 +145,7 @@ by (simp add: complex_inverse_def) instance - by intro_classes (simp_all add: complex_mult_def divide_minus_left + by intro_classes (simp_all add: complex_mult_def distrib_left distrib_right right_diff_distrib left_diff_distrib complex_inverse_def complex_divide_def power2_eq_square add_divide_distrib [symmetric] @@ -656,7 +656,7 @@ moreover have "!!u v. u / (x\<^sup>2 + y\<^sup>2) + v / (x\<^sup>2 + y\<^sup>2) = (u + v) / (x\<^sup>2 + y\<^sup>2)" by (metis add_divide_distrib) ultimately show ?thesis using Complex False `0 < x\<^sup>2 + y\<^sup>2` - apply (simp add: complex_divide_def divide_minus_left zero_less_divide_iff less_divide_eq) + apply (simp add: complex_divide_def zero_less_divide_iff less_divide_eq) apply (metis less_divide_eq mult_zero_left diff_conv_add_uminus minus_divide_left) done qed @@ -844,7 +844,7 @@ real (fact n) *\<^sub>R Complex (cos_coeff n * b ^ n) (sin_coeff n * b ^ n)" apply (induct n) apply (simp add: cos_coeff_def sin_coeff_def) - apply (simp add: sin_coeff_Suc cos_coeff_Suc divide_minus_left del: mult_Suc) + apply (simp add: sin_coeff_Suc cos_coeff_Suc del: mult_Suc) done } note * = this show "Re (cis b) = Re (exp (Complex 0 b))" unfolding exp_def cis_def cos_def diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Decision_Procs/Approximation.thy Wed Apr 09 09:37:47 2014 +0200 @@ -1466,8 +1466,7 @@ using float_divr_nonpos_pos_upper_bound[OF `real x \ 0` `0 < real (- floor_fl x)`] unfolding less_eq_float_def zero_float.rep_eq . - have "exp x = exp (?num * (x / ?num))" using `real ?num \ 0` - by (auto simp: divide_minus_left divide_minus_right) + have "exp x = exp (?num * (x / ?num))" using `real ?num \ 0` by auto also have "\ = exp (x / ?num) ^ ?num" unfolding exp_real_of_nat_mult .. also have "\ \ exp (float_divr prec x (- floor_fl x)) ^ ?num" unfolding num_eq fl_eq by (rule power_mono, rule exp_le_cancel_iff[THEN iffD2], rule float_divr) auto @@ -1487,16 +1486,15 @@ case False hence "0 \ real ?horner" by auto have div_less_zero: "real (float_divl prec x (- floor_fl x)) \ 0" - using `real (floor_fl x) < 0` `real x \ 0` - by (auto simp: field_simps intro!: order_trans[OF float_divl]) + using `real (floor_fl x) < 0` `real x \ 0` by (auto intro!: order_trans[OF float_divl] divide_nonpos_neg) + have "(?lb_exp_horner (float_divl prec x (- floor_fl x))) ^ ?num \ exp (float_divl prec x (- floor_fl x)) ^ ?num" using `0 \ real ?horner`[unfolded floor_fl_def[symmetric]] bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct1] by (auto intro!: power_mono) also have "\ \ exp (x / ?num) ^ ?num" unfolding num_eq fl_eq using float_divl by (auto intro!: power_mono simp del: uminus_float.rep_eq) also have "\ = exp (?num * (x / ?num))" unfolding exp_real_of_nat_mult .. - also have "\ = exp x" using `real ?num \ 0` - by (auto simp: field_simps) + also have "\ = exp x" using `real ?num \ 0` by auto finally show ?thesis unfolding lb_exp.simps if_not_P[OF `\ 0 < x`] if_P[OF `x < - 1`] int_floor_fl_def Let_def if_not_P[OF False] by auto next @@ -1508,8 +1506,7 @@ have "Float 1 -2 \ exp (x / (- floor_fl x))" unfolding Float_num . hence "real (Float 1 -2) ^ ?num \ exp (x / (- floor_fl x)) ^ ?num" by (auto intro!: power_mono) - also have "\ = exp x" unfolding num_eq fl_eq exp_real_of_nat_mult[symmetric] - using `real (floor_fl x) \ 0` by (auto simp: field_simps) + also have "\ = exp x" unfolding num_eq fl_eq exp_real_of_nat_mult[symmetric] using `real (floor_fl x) \ 0` by auto finally show ?thesis unfolding lb_exp.simps if_not_P[OF `\ 0 < x`] if_P[OF `x < - 1`] int_floor_fl_def Let_def if_P[OF True] real_of_float_power . qed diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Decision_Procs/Ferrack.thy --- a/src/HOL/Decision_Procs/Ferrack.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Decision_Procs/Ferrack.thy Wed Apr 09 09:37:47 2014 +0200 @@ -1167,7 +1167,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith hence "real c * x + ?e \ 0" by simp with xz have "?P ?z x (Eq (CN 0 c e))" @@ -1184,7 +1184,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith hence "real c * x + ?e \ 0" by simp with xz have "?P ?z x (NEq (CN 0 c e))" @@ -1201,7 +1201,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Lt (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } @@ -1217,7 +1217,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Le (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } @@ -1233,7 +1233,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Gt (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } @@ -1249,7 +1249,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Ge (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Decision_Procs/MIR.thy --- a/src/HOL/Decision_Procs/MIR.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Decision_Procs/MIR.thy Wed Apr 09 09:37:47 2014 +0200 @@ -2068,7 +2068,7 @@ from 3 have nbe: "numbound0 e" by simp fix y have "\ x < (floor (- (Inum (y#bs) e) / (real c))). ?I x (?M (Eq (CN 0 c e))) = ?I x (Eq (CN 0 c e))" - proof (simp add: divide_minus_left less_floor_eq , rule allI, rule impI) + proof (simp add: less_floor_eq , rule allI, rule impI) fix x :: int assume A: "real x + 1 \ - (Inum (y # bs) e / real c)" hence th1:"real x < - (Inum (y # bs) e / real c)" by simp @@ -2085,7 +2085,7 @@ from 4 have nbe: "numbound0 e" by simp fix y have "\ x < (floor (- (Inum (y#bs) e) / (real c))). ?I x (?M (NEq (CN 0 c e))) = ?I x (NEq (CN 0 c e))" - proof (simp add: divide_minus_left less_floor_eq , rule allI, rule impI) + proof (simp add: less_floor_eq , rule allI, rule impI) fix x :: int assume A: "real x + 1 \ - (Inum (y # bs) e / real c)" hence th1:"real x < - (Inum (y # bs) e / real c)" by simp @@ -2102,7 +2102,7 @@ from 5 have nbe: "numbound0 e" by simp fix y have "\ x < (floor (- (Inum (y#bs) e) / (real c))). ?I x (?M (Lt (CN 0 c e))) = ?I x (Lt (CN 0 c e))" - proof (simp add: divide_minus_left less_floor_eq , rule allI, rule impI) + proof (simp add: less_floor_eq , rule allI, rule impI) fix x :: int assume A: "real x + 1 \ - (Inum (y # bs) e / real c)" hence th1:"real x < - (Inum (y # bs) e / real c)" by simp @@ -2118,7 +2118,7 @@ from 6 have nbe: "numbound0 e" by simp fix y have "\ x < (floor (- (Inum (y#bs) e) / (real c))). ?I x (?M (Le (CN 0 c e))) = ?I x (Le (CN 0 c e))" - proof (simp add: divide_minus_left less_floor_eq , rule allI, rule impI) + proof (simp add: less_floor_eq , rule allI, rule impI) fix x :: int assume A: "real x + 1 \ - (Inum (y # bs) e / real c)" hence th1:"real x < - (Inum (y # bs) e / real c)" by simp @@ -2134,7 +2134,7 @@ from 7 have nbe: "numbound0 e" by simp fix y have "\ x < (floor (- (Inum (y#bs) e) / (real c))). ?I x (?M (Gt (CN 0 c e))) = ?I x (Gt (CN 0 c e))" - proof (simp add: divide_minus_left less_floor_eq , rule allI, rule impI) + proof (simp add: less_floor_eq , rule allI, rule impI) fix x :: int assume A: "real x + 1 \ - (Inum (y # bs) e / real c)" hence th1:"real x < - (Inum (y # bs) e / real c)" by simp @@ -2150,7 +2150,7 @@ from 8 have nbe: "numbound0 e" by simp fix y have "\ x < (floor (- (Inum (y#bs) e) / (real c))). ?I x (?M (Ge (CN 0 c e))) = ?I x (Ge (CN 0 c e))" - proof (simp add: divide_minus_left less_floor_eq , rule allI, rule impI) + proof (simp add: less_floor_eq , rule allI, rule impI) fix x :: int assume A: "real x + 1 \ - (Inum (y # bs) e / real c)" hence th1:"real x < - (Inum (y # bs) e / real c)" by simp @@ -4267,7 +4267,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith hence "real c * x + ?e \ 0" by simp with xz have "?P ?z x (Eq (CN 0 c e))" @@ -4284,7 +4284,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith hence "real c * x + ?e \ 0" by simp with xz have "?P ?z x (NEq (CN 0 c e))" @@ -4301,7 +4301,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Lt (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } @@ -4317,7 +4317,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Le (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } @@ -4333,7 +4333,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Gt (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } @@ -4349,7 +4349,7 @@ {fix x assume xz: "x > ?z" with mult_strict_right_mono [OF xz cp] cp - have "(real c * x > - ?e)" by (simp add: divide_minus_left mult_ac) + have "(real c * x > - ?e)" by (simp add: mult_ac) hence "real c * x + ?e > 0" by arith with xz have "?P ?z x (Ge (CN 0 c e))" using numbound0_I[OF nb, where b="x" and bs="bs" and b'="a"] by simp } diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy --- a/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Decision_Procs/Parametric_Ferrante_Rackoff.thy Wed Apr 09 09:37:47 2014 +0200 @@ -2708,7 +2708,7 @@ have "?rhs = Ifm vs (-?s / (2*?d) # bs) (Eq (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (-?s / (2*?d)) + ?r = 0" - by (simp add: field_simps r[of "- (Itm vs (x # bs) s / (2 * \d\\<^sub>p\<^bsup>vs\<^esup>))"]) + by (simp add: r[of "- (Itm vs (x # bs) s / (2 * \d\\<^sub>p\<^bsup>vs\<^esup>))"]) also have "\ \ 2 * ?d * (?a * (-?s / (2*?d)) + ?r) = 0" using d mult_cancel_left[of "2*?d" "(?a * (-?s / (2*?d)) + ?r)" 0] by simp also have "\ \ (- ?a * ?s) * (2*?d / (2*?d)) + 2 * ?d * ?r= 0" @@ -2728,12 +2728,12 @@ have "?rhs = Ifm vs (-?t / (2*?c) # bs) (Eq (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (-?t / (2*?c)) + ?r = 0" - by (simp add: field_simps r[of "- (?t/ (2 * ?c))"]) + by (simp add: r[of "- (?t/ (2 * ?c))"]) also have "\ \ 2 * ?c * (?a * (-?t / (2 * ?c)) + ?r) = 0" using c mult_cancel_left[of "2 * ?c" "(?a * (-?t / (2 * ?c)) + ?r)" 0] by simp also have "\ \ (?a * -?t)* (2 * ?c) / (2 * ?c) + 2 * ?c * ?r= 0" by (simp add: field_simps distrib_left[of "2 * ?c"] del: distrib_left) - also have "\ \ - (?a * ?t) + 2 * ?c * ?r = 0" using c by (simp add: field_simps) + also have "\ \ - (?a * ?t) + 2 * ?c * ?r = 0" using c by simp finally have ?thesis using c d by (simp add: r[of "- (?t/ (2 * ?c))"] msubsteq_def Let_def evaldjf_ex) } @@ -2755,7 +2755,7 @@ by simp also have "\ \ ?a * (- (?d * ?t + ?c* ?s )) + 2 * ?c * ?d * ?r = 0" using nonzero_mult_divide_cancel_left [OF dc] c d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using c d by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] msubsteq_def Let_def evaldjf_ex field_simps) @@ -2825,7 +2825,7 @@ have "?rhs = Ifm vs (-?s / (2*?d) # bs) (NEq (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (-?s / (2*?d)) + ?r \ 0" - by (simp add: field_simps r[of "- (Itm vs (x # bs) s / (2 * \d\\<^sub>p\<^bsup>vs\<^esup>))"]) + by (simp add: r[of "- (Itm vs (x # bs) s / (2 * \d\\<^sub>p\<^bsup>vs\<^esup>))"]) also have "\ \ 2*?d * (?a * (-?s / (2*?d)) + ?r) \ 0" using d mult_cancel_left[of "2*?d" "(?a * (-?s / (2*?d)) + ?r)" 0] by simp also have "\ \ (- ?a * ?s) * (2*?d / (2*?d)) + 2*?d*?r\ 0" @@ -2845,13 +2845,13 @@ have "?rhs = Ifm vs (-?t / (2*?c) # bs) (NEq (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (-?t / (2*?c)) + ?r \ 0" - by (simp add: field_simps r[of "- (?t/ (2 * ?c))"]) + by (simp add: r[of "- (?t/ (2 * ?c))"]) also have "\ \ 2*?c * (?a * (-?t / (2*?c)) + ?r) \ 0" using c mult_cancel_left[of "2*?c" "(?a * (-?t / (2*?c)) + ?r)" 0] by simp also have "\ \ (?a * -?t)* (2*?c) / (2*?c) + 2*?c*?r \ 0" by (simp add: field_simps distrib_left[of "2*?c"] del: distrib_left) also have "\ \ - (?a * ?t) + 2*?c*?r \ 0" - using c by (simp add: field_simps) + using c by simp finally have ?thesis using c d by (simp add: r[of "- (?t/ (2*?c))"] msubstneq_def Let_def evaldjf_ex) } @@ -2873,7 +2873,7 @@ by simp also have "\ \ ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r \ 0" using nonzero_mult_divide_cancel_left[OF dc] c d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using c d by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] @@ -2963,7 +2963,7 @@ by simp also have "\ \ ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r < 0" using nonzero_mult_divide_cancel_left[of "2*?c*?d"] c d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using dc c d nc nd dc' by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -2988,7 +2988,7 @@ by simp also have "\ \ ?a * ((?d * ?t + ?c* ?s )) - 2 * ?c * ?d * ?r < 0" using nonzero_mult_divide_cancel_left[of "2 * ?c * ?d"] c d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using dc c d nc nd by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3005,14 +3005,14 @@ have "?rhs \ Ifm vs (- ?t / (2 * ?c) # bs) (Lt (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (- ?t / (2 * ?c))+ ?r < 0" - by (simp add: field_simps r[of "- (?t / (2 * ?c))"]) + by (simp add: r[of "- (?t / (2 * ?c))"]) also have "\ \ 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) < 0" using c mult_less_cancel_left_disj[of "2 * ?c" "?a* (- ?t / (2*?c))+ ?r" 0] c' c'' order_less_not_sym[OF c''] by simp also have "\ \ - ?a * ?t + 2 * ?c * ?r < 0" using nonzero_mult_divide_cancel_left[OF c'] c - by (simp add: divide_minus_left algebra_simps diff_divide_distrib less_le del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?t / (2*?c))"] msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3029,7 +3029,7 @@ have "?rhs \ Ifm vs (- ?t / (2*?c) # bs) (Lt (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (- ?t / (2*?c))+ ?r < 0" - by (simp add: field_simps r[of "- (?t / (2*?c))"]) + by (simp add: r[of "- (?t / (2*?c))"]) also have "\ \ 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) > 0" using c order_less_not_sym[OF c''] less_imp_neq[OF c''] c'' mult_less_cancel_left_disj[of "2 * ?c" 0 "?a* (- ?t / (2*?c))+ ?r"] @@ -3037,7 +3037,7 @@ also have "\ \ ?a*?t - 2*?c *?r < 0" using nonzero_mult_divide_cancel_left[OF c'] c order_less_not_sym[OF c''] less_imp_neq[OF c''] c'' - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?t / (2*?c))"] msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3054,14 +3054,14 @@ have "?rhs \ Ifm vs (- ?s / (2 * ?d) # bs) (Lt (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (- ?s / (2 * ?d))+ ?r < 0" - by (simp add: field_simps r[of "- (?s / (2 * ?d))"]) + by (simp add: r[of "- (?s / (2 * ?d))"]) also have "\ \ 2 * ?d * (?a * (- ?s / (2 * ?d))+ ?r) < 0" using d mult_less_cancel_left_disj[of "2 * ?d" "?a * (- ?s / (2 * ?d))+ ?r" 0] d' d'' order_less_not_sym[OF d''] by simp also have "\ \ - ?a * ?s+ 2 * ?d * ?r < 0" using nonzero_mult_divide_cancel_left[OF d'] d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib less_le del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?s / (2*?d))"] msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3078,7 +3078,7 @@ have "?rhs \ Ifm vs (- ?s / (2 * ?d) # bs) (Lt (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (- ?s / (2 * ?d)) + ?r < 0" - by (simp add: field_simps r[of "- (?s / (2 * ?d))"]) + by (simp add: r[of "- (?s / (2 * ?d))"]) also have "\ \ 2 * ?d * (?a * (- ?s / (2 * ?d)) + ?r) > 0" using d order_less_not_sym[OF d''] less_imp_neq[OF d''] d'' mult_less_cancel_left_disj[of "2 * ?d" 0 "?a* (- ?s / (2*?d))+ ?r"] @@ -3086,7 +3086,7 @@ also have "\ \ ?a * ?s - 2 * ?d * ?r < 0" using nonzero_mult_divide_cancel_left[OF d'] d order_less_not_sym[OF d''] less_imp_neq[OF d''] d'' - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?s / (2*?d))"] msubstlt_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3177,7 +3177,7 @@ by simp also have "\ \ ?a * (- (?d * ?t + ?c* ?s )) + 2*?c*?d*?r \ 0" using nonzero_mult_divide_cancel_left[of "2*?c*?d"] c d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using dc c d nc nd dc' by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] msubstle_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3202,7 +3202,7 @@ by simp also have "\ \ ?a * ((?d * ?t + ?c* ?s )) - 2 * ?c * ?d * ?r \ 0" using nonzero_mult_divide_cancel_left[of "2 * ?c * ?d"] c d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using dc c d nc nd by (simp add: r[of "(- (?d * ?t) + - (?c *?s)) / (2 * ?c * ?d)"] msubstle_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3219,14 +3219,14 @@ have "?rhs \ Ifm vs (- ?t / (2 * ?c) # bs) (Le (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (- ?t / (2 * ?c))+ ?r \ 0" - by (simp add: field_simps r[of "- (?t / (2 * ?c))"]) + by (simp add: r[of "- (?t / (2 * ?c))"]) also have "\ \ 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) \ 0" using c mult_le_cancel_left[of "2 * ?c" "?a* (- ?t / (2*?c))+ ?r" 0] c' c'' order_less_not_sym[OF c''] by simp also have "\ \ - ?a*?t+ 2*?c *?r \ 0" using nonzero_mult_divide_cancel_left[OF c'] c - by (simp add: divide_minus_left algebra_simps diff_divide_distrib less_le del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?t / (2*?c))"] msubstle_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3243,7 +3243,7 @@ have "?rhs \ Ifm vs (- ?t / (2 * ?c) # bs) (Le (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (- ?t / (2*?c))+ ?r \ 0" - by (simp add: field_simps r[of "- (?t / (2*?c))"]) + by (simp add: r[of "- (?t / (2*?c))"]) also have "\ \ 2 * ?c * (?a * (- ?t / (2 * ?c))+ ?r) \ 0" using c order_less_not_sym[OF c''] less_imp_neq[OF c''] c'' mult_le_cancel_left[of "2 * ?c" 0 "?a* (- ?t / (2*?c))+ ?r"] @@ -3251,7 +3251,7 @@ also have "\ \ ?a * ?t - 2 * ?c * ?r \ 0" using nonzero_mult_divide_cancel_left[OF c'] c order_less_not_sym[OF c''] less_imp_neq[OF c''] c'' - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?t / (2*?c))"] msubstle_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3268,14 +3268,14 @@ have "?rhs \ Ifm vs (- ?s / (2 * ?d) # bs) (Le (CNP 0 a r))" by (simp only: th) also have "\ \ ?a * (- ?s / (2 * ?d))+ ?r \ 0" - by (simp add: field_simps r[of "- (?s / (2*?d))"]) + by (simp add: r[of "- (?s / (2*?d))"]) also have "\ \ 2 * ?d * (?a * (- ?s / (2 * ?d)) + ?r) \ 0" using d mult_le_cancel_left[of "2 * ?d" "?a* (- ?s / (2*?d))+ ?r" 0] d' d'' order_less_not_sym[OF d''] by simp also have "\ \ - ?a * ?s + 2 * ?d * ?r \ 0" using nonzero_mult_divide_cancel_left[OF d'] d - by (simp add: divide_minus_left algebra_simps diff_divide_distrib less_le del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib less_le del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?s / (2*?d))"] msubstle_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3292,7 +3292,7 @@ have "?rhs \ Ifm vs (- ?s / (2*?d) # bs) (Le (CNP 0 a r))" by (simp only: th) also have "\ \ ?a* (- ?s / (2*?d))+ ?r \ 0" - by (simp add: field_simps r[of "- (?s / (2*?d))"]) + by (simp add: r[of "- (?s / (2*?d))"]) also have "\ \ 2*?d * (?a* (- ?s / (2*?d))+ ?r) \ 0" using d order_less_not_sym[OF d''] less_imp_neq[OF d''] d'' mult_le_cancel_left[of "2 * ?d" 0 "?a* (- ?s / (2*?d))+ ?r"] @@ -3300,7 +3300,7 @@ also have "\ \ ?a * ?s - 2 * ?d * ?r \ 0" using nonzero_mult_divide_cancel_left[OF d'] d order_less_not_sym[OF d''] less_imp_neq[OF d''] d'' - by (simp add: divide_minus_left algebra_simps diff_divide_distrib del: distrib_right) + by (simp add: algebra_simps diff_divide_distrib del: distrib_right) finally have ?thesis using c d nc nd by (simp add: r[of "- (?s / (2*?d))"] msubstle_def Let_def evaldjf_ex field_simps lt polyneg_norm polymul_norm) @@ -3326,10 +3326,10 @@ Ifm vs (((- Itm vs (x#bs) t / Ipoly vs c + - Itm vs (x#bs) s / Ipoly vs d) /2)#bs) p" using lp by (induct p rule: islin.induct) - (auto simp add: tmbound0_I + (auto simp add: tmbound0_I [where b = "(- (Itm vs (x # bs) t / \c\\<^sub>p\<^bsup>vs\<^esup>) - (Itm vs (x # bs) s / \d\\<^sub>p\<^bsup>vs\<^esup>)) / 2" and b' = x and bs = bs and vs = vs] - msubsteq msubstneq msubstlt [OF nc nd] msubstle [OF nc nd] divide_minus_left) + msubsteq msubstneq msubstlt [OF nc nd] msubstle [OF nc nd]) lemma msubst_nb: assumes lp: "islin p" @@ -3767,7 +3767,7 @@ by (auto simp add: msubst2_def lt zero_less_mult_iff mult_less_0_iff) from msubst2[OF lp nn nn2(1), of x bs t] have "\n\\<^sub>p\<^bsup>vs\<^esup> \ 0 \ Ifm vs (- Itm vs (x # bs) t / (\n\\<^sub>p\<^bsup>vs\<^esup> * 2) # bs) p" - using H(2) nn2 by (simp add: divide_minus_left divide_minus_right mult_minus2_right) + using H(2) nn2 by (simp add: mult_minus2_right) } moreover { @@ -3780,7 +3780,7 @@ then have nn: "isnpoly (n *\<^sub>p (C (-2,1)))" "\n *\<^sub>p(C (-2,1)) \\<^sub>p\<^bsup>vs\<^esup> \ 0" using H(2) by (simp_all add: polymul_norm n2) from msubst2[OF lp nn, of x bs t] have "?I (msubst2 p (n *\<^sub>p (C (-2,1))) t)" - using H(2,3) by (simp add: divide_minus_left divide_minus_right mult_minus2_right) + using H(2,3) by (simp add: mult_minus2_right) } ultimately show ?thesis by blast qed @@ -3811,7 +3811,7 @@ from msubst2[OF lp nn nn'(1), of x bs ] H(3) nn' have "\c\\<^sub>p\<^bsup>vs\<^esup> \ 0 \ \d\\<^sub>p\<^bsup>vs\<^esup> \ 0 \ Ifm vs ((- Itm vs (x # bs) t / \c\\<^sub>p\<^bsup>vs\<^esup> + - Itm vs (x # bs) s / \d\\<^sub>p\<^bsup>vs\<^esup>) / 2 # bs) p" - by (simp add: divide_minus_left divide_minus_right add_divide_distrib diff_divide_distrib mult_minus2_left mult_commute) + by (simp add: add_divide_distrib diff_divide_distrib mult_minus2_left mult_commute) } moreover { @@ -3828,7 +3828,7 @@ using H(3,4) by (simp_all add: polymul_norm n2) from msubst2[OF lp nn, of x bs ] H(3,4,5) have "Ifm vs (x#bs) (msubst2 p (C (-2, 1) *\<^sub>p c*\<^sub>p d) (Add (Mul d t) (Mul c s)))" - by (simp add: divide_minus_left divide_minus_right diff_divide_distrib add_divide_distrib mult_minus2_left mult_commute) + by (simp add: diff_divide_distrib add_divide_distrib mult_minus2_left mult_commute) } ultimately show ?thesis by blast qed diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Decision_Procs/Rat_Pair.thy --- a/src/HOL/Decision_Procs/Rat_Pair.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Decision_Procs/Rat_Pair.thy Wed Apr 09 09:37:47 2014 +0200 @@ -227,7 +227,7 @@ let ?g = "gcd a b" from a b have g: "?g \ 0"by simp from of_int_div[OF g, where ?'a = 'a] - have ?thesis by (auto simp: divide_minus_left divide_minus_right x INum_def normNum_def split_def Let_def) } + have ?thesis by (auto simp add: x INum_def normNum_def split_def Let_def) } ultimately show ?thesis by blast qed @@ -300,13 +300,13 @@ qed lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)" - by (simp add: divide_minus_left Nneg_def split_def INum_def) + by (simp add: Nneg_def split_def INum_def) lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})" by (simp add: Nsub_def split_def) lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)" - by (simp add: divide_minus_left divide_minus_right Ninv_def INum_def split_def) + by (simp add: Ninv_def INum_def split_def) lemma Ndiv[simp]: "INum (x \
\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})" by (simp add: Ndiv_def) diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Deriv.thy --- a/src/HOL/Deriv.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Deriv.thy Wed Apr 09 09:37:47 2014 +0200 @@ -825,7 +825,7 @@ lemma DERIV_mirror: "(DERIV f (- x) :> y) \ (DERIV (\x. f (- x::real) :: real) x :> - y)" - by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right divide_minus_right + by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right tendsto_minus_cancel_left field_simps conj_commute) text {* Caratheodory formulation of derivative at a point *} @@ -908,8 +908,8 @@ fix h::real assume "0 < h" "h < s" with all [of "-h"] show "f x < f (x-h)" - proof (simp add: abs_if pos_less_divide_eq divide_minus_right split add: split_if_asm) - assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h" + proof (simp add: abs_if pos_less_divide_eq split add: split_if_asm) + assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h" with l have "0 < (f (x-h) - f x) / h" by arith thus "f x < f (x-h)" @@ -1628,8 +1628,7 @@ ((\ x. (f' x / g' x)) ---> y) (at_left x) \ ((\ x. f x / g x) ---> y) (at_left x)" unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror - by (rule lhopital_right[where f'="\x. - f' (- x)"]) - (auto simp: DERIV_mirror divide_minus_left divide_minus_right) + by (rule lhopital_right[where f'="\x. - f' (- x)"]) (auto simp: DERIV_mirror) lemma lhopital: "((f::real \ real) ---> 0) (at x) \ (g ---> 0) (at x) \ @@ -1740,8 +1739,7 @@ ((\ x. (f' x / g' x)) ---> y) (at_left x) \ ((\ x. f x / g x) ---> y) (at_left x)" unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror - by (rule lhopital_right_at_top[where f'="\x. - f' (- x)"]) - (auto simp: divide_minus_left divide_minus_right DERIV_mirror) + by (rule lhopital_right_at_top[where f'="\x. - f' (- x)"]) (auto simp: DERIV_mirror) lemma lhopital_at_top: "LIM x at x. (g::real \ real) x :> at_top \ @@ -1798,7 +1796,7 @@ unfolding filterlim_at_right_to_top apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim]) using eventually_ge_at_top[where c="1::real"] - by eventually_elim (simp add: divide_minus_left divide_minus_right) + by eventually_elim simp qed end diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Fields.thy --- a/src/HOL/Fields.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Fields.thy Wed Apr 09 09:37:47 2014 +0200 @@ -152,11 +152,11 @@ lemma nonzero_minus_divide_divide: "b \ 0 ==> (-a) / (-b) = a / b" by (simp add: divide_inverse nonzero_inverse_minus_eq) -lemma divide_minus_left [field_simps]: "(-a) / b = - (a / b)" +lemma divide_minus_left [simp]: "(-a) / b = - (a / b)" by (simp add: divide_inverse) lemma diff_divide_distrib: "(a - b) / c = a / c - b / c" - using add_divide_distrib [of a "- b" c] by (simp add: divide_inverse) + using add_divide_distrib [of a "- b" c] by simp lemma nonzero_eq_divide_eq [field_simps]: "c \ 0 \ a = b / c \ a * c = b" proof - @@ -416,11 +416,11 @@ "- (a / b) = a / - b" by (simp add: divide_inverse) -lemma divide_minus_right [field_simps]: +lemma divide_minus_right [simp]: "a / - b = - (a / b)" by (simp add: divide_inverse) -lemma minus_divide_divide [simp]: +lemma minus_divide_divide: "(- a) / (- b) = a / b" apply (cases "b=0", simp) apply (simp add: nonzero_minus_divide_divide) @@ -1053,13 +1053,13 @@ lemma divide_right_mono_neg: "a <= b ==> c <= 0 ==> b / c <= a / c" apply (drule divide_right_mono [of _ _ "- c"]) -apply (auto simp: divide_minus_right) +apply auto done lemma divide_left_mono_neg: "a <= b ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b" apply (drule divide_left_mono [of _ _ "- c"]) - apply (auto simp add: divide_minus_left mult_commute) + apply (auto simp add: mult_commute) done lemma inverse_le_iff: diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Library/Convex.thy --- a/src/HOL/Library/Convex.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Library/Convex.thy Wed Apr 09 09:37:47 2014 +0200 @@ -656,7 +656,7 @@ proof - have "\z. z > 0 \ DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto then have f': "\z. z > 0 \ DERIV (\ z. - log b z) z :> - 1 / (ln b * z)" - by (auto simp: divide_minus_left DERIV_minus) + by (auto simp: DERIV_minus) have "\z :: real. z > 0 \ DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto from this[THEN DERIV_cmult, of _ "- 1 / ln b"] @@ -664,7 +664,7 @@ DERIV (\ z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" by auto then have f''0: "\z :: real. z > 0 \ DERIV (\ z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" - by (auto simp add: inverse_eq_divide divide_minus_left mult_assoc) + unfolding inverse_eq_divide by (auto simp add: mult_assoc) have f''_ge0: "\z :: real. z > 0 \ 1 / (ln b * z * z) \ 0" using `b > 1` by (auto intro!:less_imp_le simp add: divide_pos_pos[of 1] mult_pos_pos) from f''_ge0_imp_convex[OF pos_is_convex, diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Library/Float.thy --- a/src/HOL/Library/Float.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Library/Float.thy Wed Apr 09 09:37:47 2014 +0200 @@ -637,7 +637,7 @@ qed thus ?thesis using `\ b dvd a` by simp qed (simp add: ceiling_def real_of_int_minus[symmetric] divide_minus_left[symmetric] - floor_divide_eq_div dvd_neg_div del: real_of_int_minus) + floor_divide_eq_div dvd_neg_div del: divide_minus_left real_of_int_minus) lemma compute_float_up[code]: "float_up p (Float m e) = @@ -1004,7 +1004,7 @@ else (if 0 < y then - (rapprox_posrat prec (nat (-x)) (nat y)) else lapprox_posrat prec (nat (-x)) (nat (-y))))" - by transfer (auto simp: round_up_def divide_minus_left divide_minus_right round_down_def ceiling_def ac_simps) + by transfer (auto simp: round_up_def round_down_def ceiling_def ac_simps) hide_fact (open) compute_lapprox_rat lift_definition rapprox_rat :: "nat \ int \ int \ float" is @@ -1019,7 +1019,7 @@ else (if 0 < y then - (lapprox_posrat prec (nat (-x)) (nat y)) else rapprox_posrat prec (nat (-x)) (nat (-y))))" - by transfer (auto simp: round_up_def round_down_def divide_minus_left divide_minus_right ceiling_def ac_simps) + by transfer (auto simp: round_up_def round_down_def ceiling_def ac_simps) hide_fact (open) compute_rapprox_rat subsection {* Division *} diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Library/Formal_Power_Series.thy Wed Apr 09 09:37:47 2014 +0200 @@ -3635,7 +3635,7 @@ done lemma fps_sin_even: "fps_sin (- c) = - fps_sin c" - by (auto simp add: divide_minus_left fps_eq_iff fps_sin_def) + by (auto simp add: fps_eq_iff fps_sin_def) lemma fps_cos_odd: "fps_cos (- c) = fps_cos c" by (auto simp add: fps_eq_iff fps_cos_def) diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy --- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy Wed Apr 09 09:37:47 2014 +0200 @@ -998,7 +998,7 @@ f (Suc n) u * (z-u) ^ n / of_nat (fact n) + f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / of_nat (fact (Suc n)) - f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / of_nat (fact (Suc n))" - using Suc by (simp add: divide_minus_left) + using Suc by simp also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n))" proof - have "of_nat(fact(Suc n)) * diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Wed Apr 09 09:37:47 2014 +0200 @@ -2277,7 +2277,9 @@ using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def using obt(4)[unfolded le_less] - apply (auto simp: divide_le_0_iff divide_minus_right) + apply auto + unfolding divide_le_0_iff + apply auto done have t: "\v\s. u v + t * w v \ 0" proof @@ -2314,7 +2316,7 @@ obtain a where "a \ s" and "t = (\v. (u v) / (- w v)) a" and "w a < 0" using Min_in[OF _ `i\{}`] and obt(1) unfolding i_def t_def by auto - then have a: "a \ s" "u a + t * w a = 0" by (auto simp: divide_minus_right) + then have a: "a \ s" "u a + t * w a = 0" by auto have *: "\f. setsum f (s - {a}) = setsum f s - ((f a)::'b::ab_group_add)" unfolding setsum_diff1'[OF obt(1) `a\s`] by auto have "(\v\s. u v + t * w v) = 1" diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Multivariate_Analysis/Linear_Algebra.thy --- a/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Multivariate_Analysis/Linear_Algebra.thy Wed Apr 09 09:37:47 2014 +0200 @@ -1149,7 +1149,7 @@ setsum (\v. (- (inverse (u ?a))) *\<^sub>R (u v *\<^sub>R v)) S - ?u v *\<^sub>R v" using fS vS uv by (simp add: setsum_diff1 divide_inverse field_simps) also have "\ = ?a" - unfolding scaleR_right.setsum [symmetric] u using uv by (simp add: divide_minus_left) + unfolding scaleR_right.setsum [symmetric] u using uv by simp finally have "setsum (\v. ?u v *\<^sub>R v) ?S = ?a" . with th0 have ?lhs unfolding dependent_def span_explicit @@ -2143,7 +2143,7 @@ case False with span_mul[OF th, of "- 1/ k"] have th1: "f a \ span (f ` b)" - by (auto simp: divide_minus_left) + by auto from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric] have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast from "2.prems"(2) [unfolded dependent_def bex_simps(8), rule_format, of "f a"] diff -r 92345da2349f -r 91958d4b30f7 src/HOL/NSA/HDeriv.thy --- a/src/HOL/NSA/HDeriv.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/NSA/HDeriv.thy Wed Apr 09 09:37:47 2014 +0200 @@ -359,7 +359,7 @@ have "inverse (- (h * star_of x) + - (star_of x * star_of x)) = (inverse (star_of x + h) - inverse (star_of x)) / h" apply (simp add: division_ring_inverse_diff nonzero_inverse_mult_distrib [symmetric] - nonzero_inverse_minus_eq [symmetric] ac_simps ring_distribs divide_minus_left) + nonzero_inverse_minus_eq [symmetric] ac_simps ring_distribs) apply (subst nonzero_inverse_minus_eq [symmetric]) using distrib_right [symmetric, of h "star_of x" "star_of x"] apply simp apply (simp add: field_simps) diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Probability/Information.thy --- a/src/HOL/Probability/Information.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Probability/Information.thy Wed Apr 09 09:37:47 2014 +0200 @@ -945,7 +945,7 @@ show "- (\ x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \MX) = log b (measure MX A)" unfolding eq using uniform_distributed_params[OF X] - by (subst lebesgue_integral_cmult) (auto simp: divide_minus_left measure_def) + by (subst lebesgue_integral_cmult) (auto simp: measure_def) qed lemma (in information_space) entropy_simple_distributed: diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Probability/Radon_Nikodym.thy --- a/src/HOL/Probability/Radon_Nikodym.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Probability/Radon_Nikodym.thy Wed Apr 09 09:37:47 2014 +0200 @@ -241,7 +241,7 @@ by (auto simp: finite_measure_restricted N.finite_measure_restricted sets_eq) from finite_measure.Radon_Nikodym_aux_epsilon[OF this] guess X .. note X = this with S have "?P (S \ X) S n" - by (simp add: divide_minus_left measure_restricted sets_eq sets.Int) (metis inf_absorb2) + by (simp add: measure_restricted sets_eq sets.Int) (metis inf_absorb2) hence "\A. ?P A S n" .. } note Ex_P = this def A \ "rec_nat (space M) (\n A. SOME B. ?P B A n)" @@ -280,7 +280,7 @@ hence "0 < - ?d B" by auto from ex_inverse_of_nat_Suc_less[OF this] obtain n where *: "?d B < - 1 / real (Suc n)" - by (auto simp: divide_minus_left real_eq_of_nat inverse_eq_divide field_simps) + by (auto simp: real_eq_of_nat inverse_eq_divide field_simps) have "B \ A (Suc n)" using B by (auto simp del: nat.rec(2)) from epsilon[OF B(1) this] * show False by auto diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Rat.thy --- a/src/HOL/Rat.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Rat.thy Wed Apr 09 09:37:47 2014 +0200 @@ -665,7 +665,7 @@ by transfer (simp add: add_frac_eq) lemma of_rat_minus: "of_rat (- a) = - of_rat a" - by transfer (simp add: divide_minus_left) + by transfer simp lemma of_rat_neg_one [simp]: "of_rat (- 1) = - 1" diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Real_Vector_Spaces.thy --- a/src/HOL/Real_Vector_Spaces.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Real_Vector_Spaces.thy Wed Apr 09 09:37:47 2014 +0200 @@ -1116,10 +1116,10 @@ by (simp add: sgn_div_norm divide_inverse) lemma real_sgn_pos: "0 < (x::real) \ sgn x = 1" - by (rule sgn_pos) +unfolding real_sgn_eq by simp lemma real_sgn_neg: "(x::real) < 0 \ sgn x = -1" - by (rule sgn_neg) +unfolding real_sgn_eq by simp lemma norm_conv_dist: "norm x = dist x 0" unfolding dist_norm by simp diff -r 92345da2349f -r 91958d4b30f7 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Tue Apr 08 23:16:00 2014 +0200 +++ b/src/HOL/Transcendental.thy Wed Apr 09 09:37:47 2014 +0200 @@ -2145,7 +2145,7 @@ lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)" unfolding cos_coeff_def sin_coeff_def - by (simp del: mult_Suc, auto simp add: divide_minus_left odd_Suc_mult_two_ex) + by (simp del: mult_Suc, auto simp add: odd_Suc_mult_two_ex) lemma summable_sin: "summable (\n. sin_coeff n * x ^ n)" unfolding sin_coeff_def @@ -2169,7 +2169,7 @@ by (simp add: diffs_def sin_coeff_Suc real_of_nat_def del: of_nat_Suc) lemma diffs_cos_coeff: "diffs cos_coeff = (\n. - sin_coeff n)" - by (simp add: divide_minus_left diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc) + by (simp add: diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc) text{*Now at last we can get the derivatives of exp, sin and cos*} @@ -3239,7 +3239,7 @@ assume "x \ {-1..1}" then show "x \ sin ` {- pi / 2..pi / 2}" using arcsin_lbound arcsin_ubound - by (intro image_eqI[where x="arcsin x"]) (auto simp: divide_minus_left) + by (intro image_eqI[where x="arcsin x"]) auto qed simp finally show ?thesis . qed @@ -3338,14 +3338,12 @@ lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- pi/2))" by (rule filterlim_at_bot_at_right[where Q="\x. - pi/2 < x \ x < pi/2" and P="\x. True" and g=arctan]) - (auto simp: le_less eventually_at dist_real_def divide_minus_left - simp del: less_divide_eq_numeral1 + (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1 intro!: tan_monotone exI[of _ "pi/2"]) lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))" by (rule filterlim_at_top_at_left[where Q="\x. - pi/2 < x \ x < pi/2" and P="\x. True" and g=arctan]) - (auto simp: le_less eventually_at dist_real_def divide_minus_left - simp del: less_divide_eq_numeral1 + (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1 intro!: tan_monotone exI[of _ "pi/2"]) lemma tendsto_arctan_at_top: "(arctan ---> (pi/2)) at_top" @@ -3967,7 +3965,7 @@ show "tan (sgn x * pi / 2 - arctan x) = 1 / x" unfolding tan_inverse [of "arctan x", unfolded tan_arctan] unfolding sgn_real_def - by (simp add: divide_minus_left tan_def cos_arctan sin_arctan sin_diff cos_diff) + by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff) qed theorem pi_series: "pi / 4 = (\ k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM")