# HG changeset patch # User clasohm # Date 803833985 -7200 # Node ID 928a16e02f9f88817df2371c9556a6ff0a2953e8 # Parent bc295e3dc078a814f98dfd23d054e024b81405c9 removed \...\ inside strings diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/AC/AC15_WO6.thy --- a/src/ZF/AC/AC15_WO6.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/AC/AC15_WO6.thy Thu Jun 22 17:13:05 1995 +0200 @@ -1,3 +1,3 @@ (*Dummy theory to document dependencies *) -AC15_WO6 = HH \ No newline at end of file +AC15_WO6 = HH diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/AC/AC17_AC1.thy --- a/src/ZF/AC/AC17_AC1.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/AC/AC17_AC1.thy Thu Jun 22 17:13:05 1995 +0200 @@ -1,3 +1,3 @@ (*Dummy theory to document dependencies *) -AC17_AC1 = HH \ No newline at end of file +AC17_AC1 = HH diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/AC/AC1_WO2.thy --- a/src/ZF/AC/AC1_WO2.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/AC/AC1_WO2.thy Thu Jun 22 17:13:05 1995 +0200 @@ -1,3 +1,3 @@ (*Dummy theory to document dependencies *) -AC1_WO2 = HH \ No newline at end of file +AC1_WO2 = HH diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/AC/AC_Equiv.thy --- a/src/ZF/AC/AC_Equiv.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/AC/AC_Equiv.thy Thu Jun 22 17:13:05 1995 +0200 @@ -41,19 +41,19 @@ WO3_def "WO3 == ALL A. EX a. Ord(a) & (EX b. b <= a & A eqpoll b)" - WO4_def "WO4(m) == ALL A. EX a f. Ord(a) & domain(f)=a & \ -\ (UN b (ALL R. well_ord(A,R) --> \ -\ well_ord(A,converse(R)))" + WO7_def "WO7 == ALL A. Finite(A) <-> (ALL R. well_ord(A,R) --> + well_ord(A,converse(R)))" - WO8_def "WO8 == ALL A. (EX f. f : (PROD X:A. X)) --> \ -\ (EX R. well_ord(A,R))" + WO8_def "WO8 == ALL A. (EX f. f : (PROD X:A. X)) --> + (EX R. well_ord(A,R))" (* Axioms of Choice *) @@ -61,65 +61,65 @@ AC1_def "AC1 == ALL A. 0~:A --> (EX f. f:(PROD X:A. X))" - AC2_def "AC2 == ALL A. 0~:A & pairwise_disjoint(A) \ -\ --> (EX C. ALL B:A. EX y. B Int C = {y})" + AC2_def "AC2 == ALL A. 0~:A & pairwise_disjoint(A) + --> (EX C. ALL B:A. EX y. B Int C = {y})" AC3_def "AC3 == ALL A B. ALL f:A->B. EX g. g:(PROD x:{a:A. f`a~=0}. f`x)" AC4_def "AC4 == ALL R A B. (R<=A*B --> (EX f. f:(PROD x:domain(R). R``{x})))" - AC5_def "AC5 == ALL A B. ALL f:A->B. EX g:range(f)->A. \ -\ ALL x:domain(g). f`(g`x) = x" + AC5_def "AC5 == ALL A B. ALL f:A->B. EX g:range(f)->A. + ALL x:domain(g). f`(g`x) = x" AC6_def "AC6 == ALL A. 0~:A --> (PROD B:A. B)~=0" - AC7_def "AC7 == ALL A. 0~:A & (ALL B1:A. ALL B2:A. B1 eqpoll B2) \ -\ --> (PROD B:A. B)~=0" + AC7_def "AC7 == ALL A. 0~:A & (ALL B1:A. ALL B2:A. B1 eqpoll B2) + --> (PROD B:A. B)~=0" - AC8_def "AC8 == ALL A. (ALL B:A. EX B1 B2. B= & B1 eqpoll B2) \ -\ --> (EX f. ALL B:A. f`B : bij(fst(B),snd(B)))" + AC8_def "AC8 == ALL A. (ALL B:A. EX B1 B2. B= & B1 eqpoll B2) + --> (EX f. ALL B:A. f`B : bij(fst(B),snd(B)))" - AC9_def "AC9 == ALL A. (ALL B1:A. ALL B2:A. B1 eqpoll B2) --> \ -\ (EX f. ALL B1:A. ALL B2:A. f` : bij(B1,B2))" + AC9_def "AC9 == ALL A. (ALL B1:A. ALL B2:A. B1 eqpoll B2) --> + (EX f. ALL B1:A. ALL B2:A. f` : bij(B1,B2))" - AC10_def "AC10(n) == ALL A. (ALL B:A. ~Finite(B)) --> \ -\ (EX f. ALL B:A. (pairwise_disjoint(f`B) & \ -\ sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B))" + AC10_def "AC10(n) == ALL A. (ALL B:A. ~Finite(B)) --> + (EX f. ALL B:A. (pairwise_disjoint(f`B) & + sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B))" AC11_def "AC11 == EX n:nat. 1 le n & AC10(n)" - AC12_def "AC12 == ALL A. (ALL B:A. ~Finite(B)) --> \ -\ (EX n:nat. 1 le n & (EX f. ALL B:A. (pairwise_disjoint(f`B) & \ -\ sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B)))" + AC12_def "AC12 == ALL A. (ALL B:A. ~Finite(B)) --> + (EX n:nat. 1 le n & (EX f. ALL B:A. (pairwise_disjoint(f`B) & + sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B)))" - AC13_def "AC13(m) == ALL A. 0~:A --> (EX f. ALL B:A. f`B~=0 & \ -\ f`B <= B & f`B lepoll m)" + AC13_def "AC13(m) == ALL A. 0~:A --> (EX f. ALL B:A. f`B~=0 & + f`B <= B & f`B lepoll m)" AC14_def "AC14 == EX m:nat. 1 le m & AC13(m)" - AC15_def "AC15 == ALL A. 0~:A --> (EX m:nat. 1 le m & (EX f. ALL B:A. \ -\ f`B~=0 & f`B <= B & f`B lepoll m))" + AC15_def "AC15 == ALL A. 0~:A --> (EX m:nat. 1 le m & (EX f. ALL B:A. + f`B~=0 & f`B <= B & f`B lepoll m))" - AC16_def "AC16(n, k) == ALL A. ~Finite(A) --> \ -\ (EX T. T <= {X:Pow(A). X eqpoll succ(n)} & \ -\ (ALL X:{X:Pow(A). X eqpoll succ(k)}. EX! Y. Y:T & X <= Y))" + AC16_def "AC16(n, k) == ALL A. ~Finite(A) --> + (EX T. T <= {X:Pow(A). X eqpoll succ(n)} & + (ALL X:{X:Pow(A). X eqpoll succ(k)}. EX! Y. Y:T & X <= Y))" - AC17_def "AC17 == ALL A. ALL g: (Pow(A)-{0} -> A) -> Pow(A)-{0}. \ -\ EX f: Pow(A)-{0} -> A. f`(g`f) : g`f" + AC17_def "AC17 == ALL A. ALL g: (Pow(A)-{0} -> A) -> Pow(A)-{0}. + EX f: Pow(A)-{0} -> A. f`(g`f) : g`f" - AC18_def "AC18 == (!!X A B. A~=0 & (ALL a:A. B(a) ~= 0) --> \ -\ ((INT a:A. UN b:B(a). X(a,b)) = \ -\ (UN f: PROD a:A. B(a). INT a:A. X(a, f`a))))" + AC18_def "AC18 == (!!X A B. A~=0 & (ALL a:A. B(a) ~= 0) --> + ((INT a:A. UN b:B(a). X(a,b)) = + (UN f: PROD a:A. B(a). INT a:A. X(a, f`a))))" - AC19_def "AC19 == ALL A. A~=0 & 0~:A --> ((INT a:A. UN b:a. b) = \ -\ (UN f:(PROD B:A. B). INT a:A. f`a))" + AC19_def "AC19 == ALL A. A~=0 & 0~:A --> ((INT a:A. UN b:a. b) = + (UN f:(PROD B:A. B). INT a:A. f`a))" (* Auxiliary definitions used in the above definitions *) - pairwise_disjoint_def "pairwise_disjoint(A) \ -\ == ALL A1:A. ALL A2:A. A1 Int A2 ~= 0 --> A1=A2" + pairwise_disjoint_def "pairwise_disjoint(A) + == ALL A1:A. ALL A2:A. A1 Int A2 ~= 0 --> A1=A2" - sets_of_size_between_def "sets_of_size_between(A,m,n) \ -\ == ALL B:A. m lepoll B & B lepoll n" + sets_of_size_between_def "sets_of_size_between(A,m,n) + == ALL B:A. m lepoll B & B lepoll n" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/AC/HH.thy --- a/src/ZF/AC/HH.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/AC/HH.thy Thu Jun 22 17:13:05 1995 +0200 @@ -16,8 +16,8 @@ defs - HH_def "HH(f,x,a) == transrec(a, %b r. (lam z:Pow(x). \ -\ if(f`z:Pow(z)-{0}, f`z, {x}))`(x - (UN c:b. r`c)))" + HH_def "HH(f,x,a) == transrec(a, %b r. (lam z:Pow(x). + if(f`z:Pow(z)-{0}, f`z, {x}))`(x - (UN c:b. r`c)))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/AC/Transrec2.thy --- a/src/ZF/AC/Transrec2.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/AC/Transrec2.thy Thu Jun 22 17:13:05 1995 +0200 @@ -14,10 +14,10 @@ defs - transrec2_def "transrec2(alpha, a, b) == \ -\ transrec(alpha, %i r. if(i=0, \ -\ a, if(EX j. i=succ(j), \ -\ b(THE j. i=succ(j), r`(THE j. i=succ(j))), \ -\ UN j : R)" + first_def "first(u, X, R) + == u:X & (ALL v:X. v~=u --> : R)" - exists_first_def "exists_first(X,R) \ -\ == EX u:X. first(u, X, R)" + exists_first_def "exists_first(X,R) + == EX u:X. first(u, X, R)" end \ No newline at end of file diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/CardinalArith.thy --- a/src/ZF/CardinalArith.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/CardinalArith.thy Thu Jun 22 17:13:05 1995 +0200 @@ -25,16 +25,16 @@ cmult_def "i |*| j == |i*j|" csquare_rel_def - "csquare_rel(K) == \ -\ rvimage(K*K, \ -\ lam :K*K. , \ -\ rmult(K,Memrel(K), K*K, rmult(K,Memrel(K), K,Memrel(K))))" + "csquare_rel(K) == + rvimage(K*K, + lam :K*K. , + rmult(K,Memrel(K), K*K, rmult(K,Memrel(K), K,Memrel(K))))" (*This def is more complex than Kunen's but it more easily proved to be a cardinal*) jump_cardinal_def - "jump_cardinal(K) == \ -\ UN X:Pow(K). {z. r: Pow(K*K), well_ord(X,r) & z = ordertype(X,r)}" + "jump_cardinal(K) == + UN X:Pow(K). {z. r: Pow(K*K), well_ord(X,r) & z = ordertype(X,r)}" (*needed because jump_cardinal(K) might not be the successor of K*) csucc_def "csucc(K) == LEAST L. Card(L) & K o" defs - isofenv_def "isofenv(ve,te) == \ -\ ve_dom(ve) = te_dom(te) & \ -\ ( ALL x:ve_dom(ve). \ -\ EX c:Const. ve_app(ve,x) = v_const(c) & isof(c,te_app(te,x)))" + isofenv_def "isofenv(ve,te) == + ve_dom(ve) = te_dom(te) & + ( ALL x:ve_dom(ve). + EX c:Const. ve_app(ve,x) = v_const(c) & isof(c,te_app(te,x)))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Coind/Dynamic.thy --- a/src/ZF/Coind/Dynamic.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Coind/Dynamic.thy Thu Jun 22 17:13:05 1995 +0200 @@ -12,29 +12,29 @@ domains "EvalRel" <= "ValEnv * Exp * Val" intrs eval_constI - " [| ve:ValEnv; c:Const |] ==> \ -\ :EvalRel" + " [| ve:ValEnv; c:Const |] ==> + :EvalRel" eval_varI - " [| ve:ValEnv; x:ExVar; x:ve_dom(ve) |] ==> \ -\ :EvalRel" + " [| ve:ValEnv; x:ExVar; x:ve_dom(ve) |] ==> + :EvalRel" eval_fnI - " [| ve:ValEnv; x:ExVar; e:Exp |] ==> \ -\ :EvalRel " + " [| ve:ValEnv; x:ExVar; e:Exp |] ==> + :EvalRel " eval_fixI - " [| ve:ValEnv; x:ExVar; e:Exp; f:ExVar; cl:Val; \ -\ v_clos(x,e,ve_owr(ve,f,cl))=cl |] ==> \ -\ :EvalRel " + " [| ve:ValEnv; x:ExVar; e:Exp; f:ExVar; cl:Val; + v_clos(x,e,ve_owr(ve,f,cl))=cl |] ==> + :EvalRel " eval_appI1 - " [| ve:ValEnv; e1:Exp; e2:Exp; c1:Const; c2:Const; \ -\ :EvalRel; \ -\ :EvalRel |] ==> \ -\ :EvalRel " + " [| ve:ValEnv; e1:Exp; e2:Exp; c1:Const; c2:Const; + :EvalRel; + :EvalRel |] ==> + :EvalRel " eval_appI2 - " [| ve:ValEnv; vem:ValEnv; e1:Exp; e2:Exp; em:Exp; xm:ExVar; v:Val; \ -\ :EvalRel; \ -\ :EvalRel; \ -\ :EvalRel |] ==> \ -\ :EvalRel " + " [| ve:ValEnv; vem:ValEnv; e1:Exp; e2:Exp; em:Exp; xm:ExVar; v:Val; + :EvalRel; + :EvalRel; + :EvalRel |] ==> + :EvalRel " type_intrs "c_appI::ve_appI::ve_empI::ve_owrI::Exp.intrs@Val_ValEnv.intrs" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Coind/ECR.thy --- a/src/ZF/Coind/ECR.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Coind/ECR.thy Thu Jun 22 17:13:05 1995 +0200 @@ -16,12 +16,12 @@ htr_constI "[| c:Const; t:Ty; isof(c,t) |] ==> :HasTyRel" htr_closI - "[| x:ExVar; e:Exp; t:Ty; ve:ValEnv; te:TyEnv; \ -\ :ElabRel; \ -\ ve_dom(ve) = te_dom(te); \ -\ {.y:ve_dom(ve)}:Pow(HasTyRel) \ -\ |] ==> \ -\ :HasTyRel" + "[| x:ExVar; e:Exp; t:Ty; ve:ValEnv; te:TyEnv; + :ElabRel; + ve_dom(ve) = te_dom(te); + {.y:ve_dom(ve)}:Pow(HasTyRel) + |] ==> + :HasTyRel" monos "[Pow_mono]" type_intrs "Val_ValEnv.intrs" @@ -31,8 +31,8 @@ hastyenv :: "[i,i] => o" defs hastyenv_def - " hastyenv(ve,te) == \ -\ ve_dom(ve) = te_dom(te) & \ -\ (ALL x:ve_dom(ve). :HasTyRel)" + " hastyenv(ve,te) == + ve_dom(ve) = te_dom(te) & + (ALL x:ve_dom(ve). :HasTyRel)" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Coind/MT.thy --- a/src/ZF/Coind/MT.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Coind/MT.thy Thu Jun 22 17:13:05 1995 +0200 @@ -1,1 +1,1 @@ -MT = ECR \ No newline at end of file +MT = ECR diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Coind/Static.thy --- a/src/ZF/Coind/Static.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Coind/Static.thy Thu Jun 22 17:13:05 1995 +0200 @@ -12,24 +12,24 @@ domains "ElabRel" <= "TyEnv * Exp * Ty" intrs elab_constI - " [| te:TyEnv; c:Const; t:Ty; isof(c,t) |] ==> \ -\ :ElabRel " + " [| te:TyEnv; c:Const; t:Ty; isof(c,t) |] ==> + :ElabRel " elab_varI - " [| te:TyEnv; x:ExVar; x:te_dom(te) |] ==> \ -\ :ElabRel " + " [| te:TyEnv; x:ExVar; x:te_dom(te) |] ==> + :ElabRel " elab_fnI - " [| te:TyEnv; x:ExVar; e:Exp; t1:Ty; t2:Ty; \ -\ :ElabRel |] ==> \ -\ :ElabRel " + " [| te:TyEnv; x:ExVar; e:Exp; t1:Ty; t2:Ty; + :ElabRel |] ==> + :ElabRel " elab_fixI - " [| te:TyEnv; f:ExVar; x:ExVar; t1:Ty; t2:Ty; \ -\ :ElabRel |] ==> \ -\ :ElabRel " + " [| te:TyEnv; f:ExVar; x:ExVar; t1:Ty; t2:Ty; + :ElabRel |] ==> + :ElabRel " elab_appI - " [| te:TyEnv; e1:Exp; e2:Exp; t1:Ty; t2:Ty; \ -\ :ElabRel; \ -\ :ElabRel |] ==> \ -\ :ElabRel " + " [| te:TyEnv; e1:Exp; e2:Exp; t1:Ty; t2:Ty; + :ElabRel; + :ElabRel |] ==> + :ElabRel " type_intrs "te_appI::Exp.intrs@Ty.intrs" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Coind/Types.thy --- a/src/ZF/Coind/Types.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Coind/Types.thy Thu Jun 22 17:13:05 1995 +0200 @@ -26,8 +26,8 @@ te_rec :: "[i,i,[i,i,i,i]=>i] => i" defs te_rec_def - "te_rec(te,c,h) == \ -\ Vrec(te,%te g.TyEnv_case(c,%tem x t.h(tem,x,t,g`tem),te))" + "te_rec(te,c,h) == + Vrec(te,%te g.TyEnv_case(c,%tem x t.h(tem,x,t,g`tem),te))" consts te_dom :: "i => i" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Coind/Values.thy --- a/src/ZF/Coind/Values.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Coind/Values.thy Thu Jun 22 17:13:05 1995 +0200 @@ -26,8 +26,8 @@ defs ve_emp_def "ve_emp == ve_mk(map_emp)" ve_owr_def - "ve_owr(ve,x,v) == \ -\ ve_mk(Val_ValEnv_case(%x.0,%x y z.0,%m.map_owr(m,x,v),ve))" + "ve_owr(ve,x,v) == + ve_mk(Val_ValEnv_case(%x.0,%x y z.0,%m.map_owr(m,x,v),ve))" ve_dom_def "ve_dom(ve) == Val_ValEnv_case(%x.0,%x y z.0,%m.domain(m),ve)" ve_app_def diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/EquivClass.thy --- a/src/ZF/EquivClass.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/EquivClass.thy Thu Jun 22 17:13:05 1995 +0200 @@ -17,7 +17,7 @@ congruent_def "congruent(r,b) == ALL y z. :r --> b(y)=b(z)" congruent2_def - "congruent2(r,b) == ALL y1 z1 y2 z2. \ -\ :r --> :r --> b(y1,y2) = b(z1,z2)" + "congruent2(r,b) == ALL y1 z1 y2 z2. + :r --> :r --> b(y1,y2) = b(z1,z2)" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Finite.thy --- a/src/ZF/Finite.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Finite.thy Thu Jun 22 17:13:05 1995 +0200 @@ -23,7 +23,7 @@ domains "FiniteFun(A,B)" <= "Fin(A*B)" intrs emptyI "0 : A -||> B" - consI "[| a: A; b: B; h: A -||> B; a ~: domain(h) \ -\ |] ==> cons(,h) : A -||> B" + consI "[| a: A; b: B; h: A -||> B; a ~: domain(h) + |] ==> cons(,h) : A -||> B" type_intrs "Fin.intrs" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/IMP/Com.thy --- a/src/ZF/IMP/Com.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/IMP/Com.thy Thu Jun 22 17:13:05 1995 +0200 @@ -32,8 +32,8 @@ N "[| n:nat ; sigma:loc->nat |] ==> -a-> n" X "[| x:loc; sigma:loc->nat |] ==> -a-> sigma`x" Op1 "[| -a-> n; f: nat -> nat |] ==> -a-> f`n" - Op2 "[| -a-> n0; -a-> n1; f: (nat*nat) -> nat |] \ -\ ==> -a-> f`" + Op2 "[| -a-> n0; -a-> n1; f: (nat*nat) -> nat |] + ==> -a-> f`" type_intrs "aexp.intrs@[apply_funtype]" @@ -62,16 +62,16 @@ intrs (*avoid clash with ML constructors true, false*) tru "[| sigma:loc -> nat |] ==> -b-> 1" fls "[| sigma:loc -> nat |] ==> -b-> 0" - ROp "[| -a-> n0; -a-> n1; f: (nat*nat)->bool |] \ -\ ==> -b-> f` " + ROp "[| -a-> n0; -a-> n1; f: (nat*nat)->bool |] + ==> -b-> f` " noti "[| -b-> w |] ==> -b-> not(w)" - andi "[| -b-> w0; -b-> w1 |] \ -\ ==> -b-> (w0 and w1)" - ori "[| -b-> w0; -b-> w1 |] \ -\ ==> -b-> (w0 or w1)" + andi "[| -b-> w0; -b-> w1 |] + ==> -b-> (w0 and w1)" + ori "[| -b-> w0; -b-> w1 |] + ==> -b-> (w0 or w1)" - type_intrs "bexp.intrs @ \ -\ [apply_funtype, and_type, or_type, bool_1I, bool_0I, not_type]" + type_intrs "bexp.intrs @ + [apply_funtype, and_type, or_type, bool_1I, bool_0I, not_type]" type_elims "[make_elim(evala.dom_subset RS subsetD)]" @@ -104,30 +104,30 @@ intrs skip "[| sigma: loc -> nat |] ==> -c-> sigma" - assign "[| m: nat; x: loc; -a-> m |] ==> \ -\ -c-> sigma[m/x]" + assign "[| m: nat; x: loc; -a-> m |] ==> + -c-> sigma[m/x]" - semi "[| -c-> sigma2; -c-> sigma1 |] ==> \ -\ -c-> sigma1" + semi "[| -c-> sigma2; -c-> sigma1 |] ==> + -c-> sigma1" - ifc1 "[| b:bexp; c1:com; sigma:loc->nat; \ -\ -b-> 1; -c-> sigma1 |] ==> \ -\ -c-> sigma1" + ifc1 "[| b:bexp; c1:com; sigma:loc->nat; + -b-> 1; -c-> sigma1 |] ==> + -c-> sigma1" - ifc0 "[| b:bexp; c0:com; sigma:loc->nat; \ -\ -b-> 0; -c-> sigma1 |] ==> \ -\ -c-> sigma1" + ifc0 "[| b:bexp; c0:com; sigma:loc->nat; + -b-> 0; -c-> sigma1 |] ==> + -c-> sigma1" - while0 "[| c: com; -b-> 0 |] ==> \ -\ -c-> sigma " + while0 "[| c: com; -b-> 0 |] ==> + -c-> sigma " - while1 "[| c : com; -b-> 1; -c-> sigma2; \ -\ -c-> sigma1 |] ==> \ -\ -c-> sigma1 " + while1 "[| c : com; -b-> 1; -c-> sigma2; + -c-> sigma1 |] ==> + -c-> sigma1 " con_defs "[assign_def]" type_intrs "bexp.intrs @ com.intrs @ [if_type,lam_type,apply_type]" - type_elims "[make_elim(evala.dom_subset RS subsetD), \ -\ make_elim(evalb.dom_subset RS subsetD) ]" + type_elims "[make_elim(evala.dom_subset RS subsetD), + make_elim(evalb.dom_subset RS subsetD) ]" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/IMP/Denotation.thy --- a/src/ZF/IMP/Denotation.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/IMP/Denotation.thy Thu Jun 22 17:13:05 1995 +0200 @@ -31,15 +31,15 @@ B_or_def "B(b0 ori b1) == (%sigma. B(b0,sigma) or B(b1,sigma))" C_skip_def "C(skip) == id(loc->nat)" - C_assign_def "C(x := a) == {io:(loc->nat)*(loc->nat). \ -\ snd(io) = fst(io)[A(a,fst(io))/x]}" + C_assign_def "C(x := a) == {io:(loc->nat)*(loc->nat). + snd(io) = fst(io)[A(a,fst(io))/x]}" C_comp_def "C(c0 ; c1) == C(c1) O C(c0)" - C_if_def "C(ifc b then c0 else c1) == {io:C(c0). B(b,fst(io))=1} Un \ -\ {io:C(c1). B(b,fst(io))=0}" + C_if_def "C(ifc b then c0 else c1) == {io:C(c0). B(b,fst(io))=1} Un + {io:C(c1). B(b,fst(io))=0}" - Gamma_def "Gamma(b,c) == (%phi.{io : (phi O C(c)). B(b,fst(io))=1} Un \ -\ {io : id(loc->nat). B(b,fst(io))=0})" + Gamma_def "Gamma(b,c) == (%phi.{io : (phi O C(c)). B(b,fst(io))=1} Un + {io : id(loc->nat). B(b,fst(io))=0})" C_while_def "C(while b do c) == lfp((loc->nat)*(loc->nat), Gamma(b,c))" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Nat.thy --- a/src/ZF/Nat.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Nat.thy Thu Jun 22 17:13:05 1995 +0200 @@ -20,7 +20,7 @@ "nat_case(a,b,k) == THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))" nat_rec_def - "nat_rec(k,a,b) == \ -\ wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))" + "nat_rec(k,a,b) == + wfrec(Memrel(nat), k, %n f. nat_case(a, %m. b(m, f`m), n))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Order.thy --- a/src/ZF/Order.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Order.thy Thu Jun 22 17:13:05 1995 +0200 @@ -25,17 +25,17 @@ well_ord_def "well_ord(A,r) == tot_ord(A,r) & wf[A](r)" - mono_map_def "mono_map(A,r,B,s) == \ -\ {f: A->B. ALL x:A. ALL y:A. :r --> :s}" + mono_map_def "mono_map(A,r,B,s) == + {f: A->B. ALL x:A. ALL y:A. :r --> :s}" - ord_iso_def "ord_iso(A,r,B,s) == \ -\ {f: bij(A,B). ALL x:A. ALL y:A. :r <-> :s}" + ord_iso_def "ord_iso(A,r,B,s) == + {f: bij(A,B). ALL x:A. ALL y:A. :r <-> :s}" pred_def "pred(A,x,r) == {y:A. :r}" ord_iso_map_def - "ord_iso_map(A,r,B,s) == \ -\ UN x:A. UN y:B. UN f: ord_iso(pred(A,x,r), r, pred(B,y,s), s). \ -\ {}" + "ord_iso_map(A,r,B,s) == + UN x:A. UN y:B. UN f: ord_iso(pred(A,x,r), r, pred(B,y,s), s). + {}" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/OrderArith.thy --- a/src/ZF/OrderArith.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/OrderArith.thy Thu Jun 22 17:13:05 1995 +0200 @@ -13,17 +13,17 @@ defs (*disjoint sum of two relations; underlies ordinal addition*) - radd_def "radd(A,r,B,s) == \ -\ {z: (A+B) * (A+B). \ -\ (EX x y. z = ) | \ -\ (EX x' x. z = & :r) | \ -\ (EX y' y. z = & :s)}" + radd_def "radd(A,r,B,s) == + {z: (A+B) * (A+B). + (EX x y. z = ) | + (EX x' x. z = & :r) | + (EX y' y. z = & :s)}" (*lexicographic product of two relations; underlies ordinal multiplication*) - rmult_def "rmult(A,r,B,s) == \ -\ {z: (A*B) * (A*B). \ -\ EX x' y' x y. z = <, > & \ -\ (: r | (x'=x & : s))}" + rmult_def "rmult(A,r,B,s) == + {z: (A*B) * (A*B). + EX x' y' x y. z = <, > & + (: r | (x'=x & : s))}" (*inverse image of a relation*) rvimage_def "rvimage(A,f,r) == {z: A*A. EX x y. z = & : r}" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Perm.thy --- a/src/ZF/Perm.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Perm.thy Thu Jun 22 17:13:05 1995 +0200 @@ -18,8 +18,8 @@ defs (*composition of relations and functions; NOT Suppes's relative product*) - comp_def "r O s == {xz : domain(s)*range(r) . \ -\ EX x y z. xz= & :s & :r}" + comp_def "r O s == {xz : domain(s)*range(r) . + EX x y z. xz= & :s & :r}" (*the identity function for A*) id_def "id(A) == (lam x:A. x)" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Rel.thy --- a/src/ZF/Rel.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Rel.thy Thu Jun 22 17:13:05 1995 +0200 @@ -25,8 +25,8 @@ trans_def "trans(r) == ALL x y z. : r --> : r --> : r" - trans_on_def "trans[A](r) == ALL x:A. ALL y:A. ALL z:A. \ -\ : r --> : r --> : r" + trans_on_def "trans[A](r) == ALL x:A. ALL y:A. ALL z:A. + : r --> : r --> : r" equiv_def "equiv(A,r) == r <= A*A & refl(A,r) & sym(r) & trans(r)" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Resid/Confluence.thy --- a/src/ZF/Resid/Confluence.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Resid/Confluence.thy Thu Jun 22 17:13:05 1995 +0200 @@ -12,10 +12,10 @@ strip :: "o" defs - confluence_def "confluence(R) == \ -\ ALL x y. :R --> (ALL z.:R --> \ -\ (EX u.:R & :R))" - strip_def "strip == ALL x y. (x ===> y) --> (ALL z.(x =1=> z) --> \ -\ (EX u.(y =1=> u) & (z===>u)))" + confluence_def "confluence(R) == + ALL x y. :R --> (ALL z.:R --> + (EX u.:R & :R))" + strip_def "strip == ALL x y. (x ===> y) --> (ALL z.(x =1=> z) --> + (EX u.(y =1=> u) & (z===>u)))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Resid/Redex.thy --- a/src/ZF/Resid/Redex.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Resid/Redex.thy Thu Jun 22 17:13:05 1995 +0200 @@ -21,8 +21,8 @@ defs redex_rec_def - "redex_rec(p,b,c,d) == \ -\ Vrec(p, %p g.redexes_case(b, %x.c(x,g`x), \ -\ %n x y.d(n, x, y, g`x, g`y), p))" + "redex_rec(p,b,c,d) == + Vrec(p, %p g.redexes_case(b, %x.c(x,g`x), + %n x y.d(n, x, y, g`x, g`y), p))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Resid/Reduction.thy --- a/src/ZF/Resid/Reduction.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Resid/Reduction.thy Thu Jun 22 17:13:05 1995 +0200 @@ -23,10 +23,10 @@ intrs beta "[|m:lambda; n:lambda|] ==> Apl(Fun(m),n) -1-> n/m" rfun "[|m -1-> n|] ==> Fun(m) -1-> Fun(n)" - apl_l "[|m2:lambda; m1 -1-> n1|] ==> \ -\ Apl(m1,m2) -1-> Apl(n1,m2)" - apl_r "[|m1:lambda; m2 -1-> n2|] ==> \ -\ Apl(m1,m2) -1-> Apl(m1,n2)" + apl_l "[|m2:lambda; m1 -1-> n1|] ==> + Apl(m1,m2) -1-> Apl(n1,m2)" + apl_r "[|m1:lambda; m2 -1-> n2|] ==> + Apl(m1,m2) -1-> Apl(m1,n2)" type_intrs "red_typechecks" inductive @@ -40,12 +40,12 @@ inductive domains "Spar_red1" <= "lambda*lambda" intrs - beta "[|m =1=> m'; \ -\ n =1=> n'|] ==> Apl(Fun(m),n) =1=> n'/m'" + beta "[|m =1=> m'; + n =1=> n'|] ==> Apl(Fun(m),n) =1=> n'/m'" rvar "n:nat==> Var(n) =1=> Var(n)" rfun "[|m =1=> m'|]==> Fun(m) =1=> Fun(m')" - rapl "[|m =1=> m'; \ -\ n =1=> n'|] ==> Apl(m,n) =1=> Apl(m',n')" + rapl "[|m =1=> m'; + n =1=> n'|] ==> Apl(m,n) =1=> Apl(m',n')" type_intrs "red_typechecks" inductive diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Resid/Residuals.thy --- a/src/ZF/Resid/Residuals.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Resid/Residuals.thy Thu Jun 22 17:13:05 1995 +0200 @@ -20,14 +20,14 @@ domains "Sres" <= "redexes*redexes*redexes" intrs Res_Var "n:nat ==> residuals(Var(n),Var(n),Var(n))" - Res_Fun "[|residuals(u,v,w)|]==> \ -\ residuals(Fun(u),Fun(v),Fun(w))" - Res_App "[|residuals(u1,v1,w1); \ -\ residuals(u2,v2,w2); b:bool|]==> \ -\ residuals(App(b,u1,u2),App(0,v1,v2),App(b,w1,w2))" - Res_redex "[|residuals(u1,v1,w1); \ -\ residuals(u2,v2,w2); b:bool|]==> \ -\ residuals(App(b,Fun(u1),u2),App(1,Fun(v1),v2),w2/w1)" + Res_Fun "[|residuals(u,v,w)|]==> + residuals(Fun(u),Fun(v),Fun(w))" + Res_App "[|residuals(u1,v1,w1); + residuals(u2,v2,w2); b:bool|]==> + residuals(App(b,u1,u2),App(0,v1,v2),App(b,w1,w2))" + Res_redex "[|residuals(u1,v1,w1); + residuals(u2,v2,w2); b:bool|]==> + residuals(App(b,Fun(u1),u2),App(1,Fun(v1),v2),w2/w1)" type_intrs "[subst_type]@nat_typechecks@redexes.intrs@bool_typechecks" rules diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Resid/SubUnion.thy --- a/src/ZF/Resid/SubUnion.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Resid/SubUnion.thy Thu Jun 22 17:13:05 1995 +0200 @@ -23,10 +23,10 @@ intrs Sub_Var "n:nat ==> Var(n)<== Var(n)" Sub_Fun "[|u<== v|]==> Fun(u)<== Fun(v)" - Sub_App1 "[|u1<== v1; u2<== v2; b:bool|]==> \ -\ App(0,u1,u2)<== App(b,v1,v2)" - Sub_App2 "[|u1<== v1; u2<== v2|]==> \ -\ App(1,u1,u2)<== App(1,v1,v2)" + Sub_App1 "[|u1<== v1; u2<== v2; b:bool|]==> + App(0,u1,u2)<== App(b,v1,v2)" + Sub_App2 "[|u1<== v1; u2<== v2|]==> + App(1,u1,u2)<== App(1,v1,v2)" type_intrs "redexes.intrs@bool_typechecks" inductive @@ -34,8 +34,8 @@ intrs Comp_Var "n:nat ==> Var(n) ~ Var(n)" Comp_Fun "[|u ~ v|]==> Fun(u) ~ Fun(v)" - Comp_App "[|u1 ~ v1; u2 ~ v2; b1:bool; b2:bool|]==> \ -\ App(b1,u1,u2) ~ App(b2,v1,v2)" + Comp_App "[|u1 ~ v1; u2 ~ v2; b1:bool; b2:bool|]==> + App(b1,u1,u2) ~ App(b2,v1,v2)" type_intrs "redexes.intrs@bool_typechecks" inductive @@ -43,17 +43,17 @@ intrs Reg_Var "n:nat ==> regular(Var(n))" Reg_Fun "[|regular(u)|]==> regular(Fun(u))" - Reg_App1 "[|regular(Fun(u)); regular(v) \ -\ |]==>regular(App(1,Fun(u),v))" - Reg_App2 "[|regular(u); regular(v) \ -\ |]==>regular(App(0,u,v))" + Reg_App1 "[|regular(Fun(u)); regular(v) + |]==>regular(App(1,Fun(u),v))" + Reg_App2 "[|regular(u); regular(v) + |]==>regular(App(0,u,v))" type_intrs "redexes.intrs@bool_typechecks" defs - union_def "u un v == redex_rec(u, \ -\ %i.lam t:redexes.redexes_case(%j.Var(i), %x.0, %b x y.0, t), \ -\ %x m.lam t:redexes.redexes_case(%j.0, %y.Fun(m`y), %b y z.0, t), \ -\%b x y m p.lam t:redexes.redexes_case(%j.0, %y.0, \ -\ %c z u. App(b or c, m`z, p`u), t))`v" + union_def "u un v == redex_rec(u, + %i.lam t:redexes.redexes_case(%j.Var(i), %x.0, %b x y.0, t), + %x m.lam t:redexes.redexes_case(%j.0, %y.Fun(m`y), %b y z.0, t), +%b x y m p.lam t:redexes.redexes_case(%j.0, %y.0, + %c z u. App(b or c, m`z, p`u), t))`v" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Resid/Substitution.thy --- a/src/ZF/Resid/Substitution.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Resid/Substitution.thy Thu Jun 22 17:13:05 1995 +0200 @@ -17,10 +17,10 @@ "u/v" == "subst_rec(u,v,0)" defs - lift_rec_def "lift_rec(r,kg) == \ -\ redex_rec(r,%i.(lam k:nat.if(i y=z) ==> \ - \ b : PrimReplace(A,P) <-> (EX x:A. P(x,b))" + replacement "(ALL x:A. ALL y z. P(x,y) & P(x,z) --> y=z) ==> + b : PrimReplace(A,P) <-> (EX x:A. P(x,b))" defs @@ -214,8 +214,8 @@ domain_def "domain(r) == {x. w:r, EX y. w=}" range_def "range(r) == domain(converse(r))" field_def "field(r) == domain(r) Un range(r)" - function_def "function(r) == ALL x y. :r --> \ -\ (ALL y'. :r --> y=y')" + function_def "function(r) == ALL x y. :r --> + (ALL y'. :r --> y=y')" image_def "r `` A == {y : range(r) . EX x:A. : r}" vimage_def "r -`` A == converse(r)``A" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/Zorn.thy --- a/src/ZF/Zorn.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/Zorn.thy Thu Jun 22 17:13:05 1995 +0200 @@ -39,8 +39,8 @@ inductive domains "TFin(S,next)" <= "Pow(S)" intrs - nextI "[| x : TFin(S,next); next: increasing(S) \ -\ |] ==> next`x : TFin(S,next)" + nextI "[| x : TFin(S,next); next: increasing(S) + |] ==> next`x : TFin(S,next)" Pow_UnionI "Y : Pow(TFin(S,next)) ==> Union(Y) : TFin(S,next)" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Bin.thy --- a/src/ZF/ex/Bin.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Bin.thy Thu Jun 22 17:13:05 1995 +0200 @@ -44,8 +44,8 @@ defs bin_rec_def - "bin_rec(z,a,b,h) == \ -\ Vrec(z, %z g. bin_case(a, b, %w x. h(w, x, g`w), z))" + "bin_rec(z,a,b,h) == + Vrec(z, %z g. bin_case(a, b, %w x. h(w, x, g`w), z))" integ_of_bin_def "integ_of_bin(w) == bin_rec(w, $#0, $~($#1), %w x r. $#x $+ r $+ r)" @@ -54,39 +54,39 @@ (*norm_Bcons adds a bit, suppressing leading 0s and 1s*) norm_Bcons_def - "norm_Bcons(w,b) == \ -\ bin_case(cond(b,Bcons(w,b),w), cond(b,w,Bcons(w,b)), \ -\ %w' x'. Bcons(w,b), w)" + "norm_Bcons(w,b) == + bin_case(cond(b,Bcons(w,b),w), cond(b,w,Bcons(w,b)), + %w' x'. Bcons(w,b), w)" bin_succ_def - "bin_succ(w0) == \ -\ bin_rec(w0, Bcons(Plus,1), Plus, \ -\ %w x r. cond(x, Bcons(r,0), norm_Bcons(w,1)))" + "bin_succ(w0) == + bin_rec(w0, Bcons(Plus,1), Plus, + %w x r. cond(x, Bcons(r,0), norm_Bcons(w,1)))" bin_pred_def - "bin_pred(w0) == \ -\ bin_rec(w0, Minus, Bcons(Minus,0), \ -\ %w x r. cond(x, norm_Bcons(w,0), Bcons(r,1)))" + "bin_pred(w0) == + bin_rec(w0, Minus, Bcons(Minus,0), + %w x r. cond(x, norm_Bcons(w,0), Bcons(r,1)))" bin_minus_def - "bin_minus(w0) == \ -\ bin_rec(w0, Plus, Bcons(Plus,1), \ -\ %w x r. cond(x, bin_pred(Bcons(r,0)), Bcons(r,0)))" + "bin_minus(w0) == + bin_rec(w0, Plus, Bcons(Plus,1), + %w x r. cond(x, bin_pred(Bcons(r,0)), Bcons(r,0)))" bin_add_def - "bin_add(v0,w0) == \ -\ bin_rec(v0, \ -\ lam w:bin. w, \ -\ lam w:bin. bin_pred(w), \ -\ %v x r. lam w1:bin. \ -\ bin_rec(w1, Bcons(v,x), bin_pred(Bcons(v,x)), \ -\ %w y s. norm_Bcons(r`cond(x and y, bin_succ(w), w), \ -\ x xor y))) ` w0" + "bin_add(v0,w0) == + bin_rec(v0, + lam w:bin. w, + lam w:bin. bin_pred(w), + %v x r. lam w1:bin. + bin_rec(w1, Bcons(v,x), bin_pred(Bcons(v,x)), + %w y s. norm_Bcons(r`cond(x and y, bin_succ(w), w), + x xor y))) ` w0" bin_mult_def - "bin_mult(v0,w) == \ -\ bin_rec(v0, Plus, bin_minus(w), \ -\ %v x r. cond(x, bin_add(norm_Bcons(r,0),w), norm_Bcons(r,0)))" + "bin_mult(v0,w) == + bin_rec(v0, Plus, bin_minus(w), + %v x r. cond(x, bin_add(norm_Bcons(r,0),w), norm_Bcons(r,0)))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Brouwer.thy --- a/src/ZF/ex/Brouwer.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Brouwer.thy Thu Jun 22 17:13:05 1995 +0200 @@ -22,8 +22,8 @@ datatype <= "Vfrom(A Un (UN x:A. B(x)), csucc(nat Un |UN x:A. B(x)|))" "Well(A,B)" = Sup ("a:A", "f: B(a) -> Well(A,B)") monos "[Pi_mono]" - type_intrs "[[UN_upper_cardinal, le_nat_Un_cardinal] MRS le_trans] \ -\ @ inf_datatype_intrs" + type_intrs "[[UN_upper_cardinal, le_nat_Un_cardinal] MRS le_trans] + @ inf_datatype_intrs" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Comb.thy --- a/src/ZF/ex/Comb.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Comb.thy Thu Jun 22 17:13:05 1995 +0200 @@ -73,9 +73,9 @@ defs - diamond_def "diamond(r) == ALL x y. :r --> \ -\ (ALL y'. :r --> \ -\ (EX z. :r & : r))" + diamond_def "diamond(r) == ALL x y. :r --> + (ALL y'. :r --> + (EX z. :r & : r))" I_def "I == S#K#K" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Integ.thy --- a/src/ZF/ex/Integ.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Integ.thy Thu Jun 22 17:13:05 1995 +0200 @@ -23,8 +23,8 @@ defs intrel_def - "intrel == {p:(nat*nat)*(nat*nat). \ -\ EX x1 y1 x2 y2. p=<,> & x1#+y2 = x2#+y1}" + "intrel == {p:(nat*nat)*(nat*nat). + EX x1 y1 x2 y2. p=<,> & x1#+y2 = x2#+y1}" integ_def "integ == (nat*nat)/intrel" @@ -42,17 +42,17 @@ Perhaps a "curried" or even polymorphic congruent predicate would be better.*) zadd_def - "Z1 $+ Z2 == \ -\ UN z1:Z1. UN z2:Z2. let =z1; =z2 \ -\ in intrel``{}" + "Z1 $+ Z2 == + UN z1:Z1. UN z2:Z2. let =z1; =z2 + in intrel``{}" zdiff_def "Z1 $- Z2 == Z1 $+ zminus(Z2)" zless_def "Z1 $< Z2 == znegative(Z1 $- Z2)" (*This illustrates the primitive form of definitions (no patterns)*) zmult_def - "Z1 $* Z2 == \ -\ UN p1:Z1. UN p2:Z2. split(%x1 y1. split(%x2 y2. \ -\ intrel``{}, p2), p1)" + "Z1 $* Z2 == + UN p1:Z1. UN p2:Z2. split(%x1 y1. split(%x2 y2. + intrel``{}, p2), p1)" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/LList.thy --- a/src/ZF/ex/LList.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/LList.thy Thu Jun 22 17:13:05 1995 +0200 @@ -49,8 +49,8 @@ rules flip_LNil "flip(LNil) = LNil" - flip_LCons "[| x:bool; l: llist(bool) |] ==> \ -\ flip(LCons(x,l)) = LCons(not(x), flip(l))" + flip_LCons "[| x:bool; l: llist(bool) |] ==> + flip(LCons(x,l)) = LCons(not(x), flip(l))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Primrec.thy --- a/src/ZF/ex/Primrec.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Primrec.thy Thu Jun 22 17:13:05 1995 +0200 @@ -39,12 +39,12 @@ COMP_def "COMP(g,fs) == lam l:list(nat). g ` map(%f. f`l, fs)" (*Note that g is applied first to PREC(f,g)`y and then to y!*) - PREC_def "PREC(f,g) == \ -\ lam l:list(nat). list_case(0, \ -\ %x xs. rec(x, f`xs, %y r. g ` Cons(r, Cons(y, xs))), l)" + PREC_def "PREC(f,g) == + lam l:list(nat). list_case(0, + %x xs. rec(x, f`xs, %y r. g ` Cons(r, Cons(y, xs))), l)" - ACK_def "ACK(i) == rec(i, SC, \ -\ %z r. PREC (CONST (r`[1]), COMP(r,[PROJ(0)])))" + ACK_def "ACK(i) == rec(i, SC, + %z r. PREC (CONST (r`[1]), COMP(r,[PROJ(0)])))" inductive @@ -57,8 +57,8 @@ PREC "[| f: primrec; g: primrec |] ==> PREC(f,g): primrec" monos "[list_mono]" con_defs "[SC_def,CONST_def,PROJ_def,COMP_def,PREC_def]" - type_intrs "nat_typechecks @ list.intrs @ \ -\ [lam_type, list_case_type, drop_type, map_type, \ -\ apply_type, rec_type]" + type_intrs "nat_typechecks @ list.intrs @ + [lam_type, list_case_type, drop_type, map_type, + apply_type, rec_type]" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/PropLog.thy --- a/src/ZF/ex/PropLog.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/PropLog.thy Thu Jun 22 17:13:05 1995 +0200 @@ -47,13 +47,13 @@ defs prop_rec_def - "prop_rec(p,b,c,h) == \ -\ Vrec(p, %p g.prop_case(b, c, %x y. h(x, y, g`x, g`y), p))" + "prop_rec(p,b,c,h) == + Vrec(p, %p g.prop_case(b, c, %x y. h(x, y, g`x, g`y), p))" (** Semantics of propositional logic **) is_true_def - "is_true(p,t) == prop_rec(p, 0, %v. if(v:t, 1, 0), \ -\ %p q tp tq. if(tp=1,tq,1)) = 1" + "is_true(p,t) == prop_rec(p, 0, %v. if(v:t, 1, 0), + %p q tp tq. if(tp=1,tq,1)) = 1" (*Logical consequence: for every valuation, if all elements of H are true then so is p*) @@ -61,7 +61,7 @@ (** A finite set of hypotheses from t and the Vars in p **) hyps_def - "hyps(p,t) == prop_rec(p, 0, %v. {if(v:t, #v, #v=>Fls)}, \ -\ %p q Hp Hq. Hp Un Hq)" + "hyps(p,t) == prop_rec(p, 0, %v. {if(v:t, #v, #v=>Fls)}, + %p q Hp Hq. Hp Un Hq)" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Ramsey.thy --- a/src/ZF/ex/Ramsey.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Ramsey.thy Thu Jun 22 17:13:05 1995 +0200 @@ -39,8 +39,8 @@ "Atleast(n,S) == (EX f. f: inj(n,S))" Ramsey_def - "Ramsey(n,i,j) == ALL V E. Symmetric(E) & Atleast(n,V) --> \ -\ (EX C. Clique(C,V,E) & Atleast(i,C)) | \ -\ (EX I. Indept(I,V,E) & Atleast(j,I))" + "Ramsey(n,i,j) == ALL V E. Symmetric(E) & Atleast(n,V) --> + (EX C. Clique(C,V,E) & Atleast(i,C)) | + (EX I. Indept(I,V,E) & Atleast(j,I))" end diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Rmap.thy --- a/src/ZF/ex/Rmap.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Rmap.thy Thu Jun 22 17:13:05 1995 +0200 @@ -16,8 +16,8 @@ intrs NilI " : rmap(r)" - ConsI "[| : r; : rmap(r) |] ==> \ -\ : rmap(r)" + ConsI "[| : r; : rmap(r) |] ==> + : rmap(r)" type_intrs "[domainI,rangeI] @ list.intrs" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/TF.thy --- a/src/ZF/ex/TF.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/TF.thy Thu Jun 22 17:13:05 1995 +0200 @@ -24,21 +24,21 @@ defs TF_rec_def - "TF_rec(z,b,c,d) == Vrec(z, \ -\ %z r. tree_forest_case(%x f. b(x, f, r`f), \ -\ c, \ -\ %t f. d(t, f, r`t, r`f), z))" + "TF_rec(z,b,c,d) == Vrec(z, + %z r. tree_forest_case(%x f. b(x, f, r`f), + c, + %t f. d(t, f, r`t, r`f), z))" list_of_TF_def - "list_of_TF(z) == TF_rec(z, %x f r. [Tcons(x,f)], [], \ -\ %t f r1 r2. Cons(t, r2))" + "list_of_TF(z) == TF_rec(z, %x f r. [Tcons(x,f)], [], + %t f r1 r2. Cons(t, r2))" TF_of_list_def "TF_of_list(f) == list_rec(f, Fnil, %t f r. Fcons(t,r))" TF_map_def - "TF_map(h,z) == TF_rec(z, %x f r.Tcons(h(x),r), Fnil, \ -\ %t f r1 r2. Fcons(r1,r2))" + "TF_map(h,z) == TF_rec(z, %x f r.Tcons(h(x),r), Fnil, + %t f r1 r2. Fcons(r1,r2))" TF_size_def "TF_size(z) == TF_rec(z, %x f r.succ(r), 0, %t f r1 r2. r1#+r2)" diff -r bc295e3dc078 -r 928a16e02f9f src/ZF/ex/Term.thy --- a/src/ZF/ex/Term.thy Thu Jun 22 12:58:39 1995 +0200 +++ b/src/ZF/ex/Term.thy Thu Jun 22 17:13:05 1995 +0200 @@ -28,8 +28,8 @@ defs term_rec_def - "term_rec(t,d) == \ -\ Vrec(t, %t g. term_case(%x zs. d(x, zs, map(%z.g`z, zs)), t))" + "term_rec(t,d) == + Vrec(t, %t g. term_case(%x zs. d(x, zs, map(%z.g`z, zs)), t))" term_map_def "term_map(f,t) == term_rec(t, %x zs rs. Apply(f(x), rs))"