# HG changeset patch # User wenzelm # Date 1441962728 -7200 # Node ID 931b732617a2bb3cfc97a2b734efd8896c371405 # Parent 9e81e87f755b5ad61d2da364cb4f67ddb33ce92f more symbols; diff -r 9e81e87f755b -r 931b732617a2 src/HOL/ex/SOS.thy --- a/src/HOL/ex/SOS.thy Thu Sep 10 17:52:31 2015 +0200 +++ b/src/HOL/ex/SOS.thy Fri Sep 11 11:12:08 2015 +0200 @@ -12,119 +12,131 @@ lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \ a < 0" by sos -lemma "a1 >= 0 & a2 >= 0 \ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \ (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)" +lemma "a1 \ 0 \ a2 \ 0 \ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \ (a1 * b1 + a2 * b2 = 0) \ + a1 * a2 - b1 * b2 \ (0::real)" by sos -lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0" +lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \ a < 0" by sos -lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1 --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1" +lemma "(0::real) \ x \ x \ 1 \ 0 \ y \ y \ 1 \ + x\<^sup>2 + y\<^sup>2 < 1 \ (x - 1)\<^sup>2 + y\<^sup>2 < 1 \ x\<^sup>2 + (y - 1)\<^sup>2 < 1 \ (x - 1)\<^sup>2 + (y - 1)\<^sup>2 < 1" by sos -lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z" +lemma "(0::real) \ x \ 0 \ y \ 0 \ z \ x + y + z \ 3 \ x * y + x * z + y * z \ 3 * x * y * z" by sos -lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3" +lemma "(x::real)\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \ (x + y + z)\<^sup>2 \ 3" by sos -lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)" +lemma "w\<^sup>2 + x\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \ (w + x + y + z)\<^sup>2 \ (4::real)" by sos -lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1" +lemma "(x::real) \ 1 \ y \ 1 \ x * y \ x + y - 1" by sos -lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1" +lemma "(x::real) > 1 \ y > 1 \ x * y > x + y - 1" by sos -lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)" +lemma "\x\ \ 1 \ \64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x\ \ (1::real)" by sos text \One component of denominator in dodecahedral example.\ -lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)" +lemma "2 \ x \ x \ 125841 / 50000 \ 2 \ y \ y \ 125841 / 50000 \ 2 \ z \ z \ 125841 / 50000 \ + 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) \ (0::real)" by sos text \Over a larger but simpler interval.\ -lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" +lemma "(2::real) \ x \ x \ 4 \ 2 \ y \ y \ 4 \ 2 \ z \ z \ 4 \ + 0 \ 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" by sos text \We can do 12. I think 12 is a sharp bound; see PP's certificate.\ -lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" +lemma "2 \ (x::real) \ x \ 4 \ 2 \ y \ y \ 4 \ 2 \ z \ z \ 4 \ + 12 \ 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" by sos text \Inequality from sci.math (see "Leon-Sotelo, por favor").\ -lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2" +lemma "0 \ (x::real) \ 0 \ y \ x * y = 1 \ x + y \ x\<^sup>2 + y\<^sup>2" by sos -lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2" +lemma "0 \ (x::real) \ 0 \ y \ x * y = 1 \ x * y * (x + y) \ x\<^sup>2 + y\<^sup>2" by sos -lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2" +lemma "0 \ (x::real) \ 0 \ y \ x * y * (x + y)\<^sup>2 \ (x\<^sup>2 + y\<^sup>2)\<^sup>2" by sos -lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \ c * a^2 * b <= x" +lemma "(0::real) \ a \ 0 \ b \ 0 \ c \ c * (2 * a + b)^3 / 27 \ x \ c * a\<^sup>2 * b \ x" by sos -lemma "(0::real) < x --> 0 < 1 + x + x^2" +lemma "(0::real) < x \ 0 < 1 + x + x\<^sup>2" by sos -lemma "(0::real) <= x --> 0 < 1 + x + x^2" +lemma "(0::real) \ x \ 0 < 1 + x + x\<^sup>2" by sos -lemma "(0::real) < 1 + x^2" +lemma "(0::real) < 1 + x\<^sup>2" by sos -lemma "(0::real) <= 1 + 2 * x + x^2" +lemma "(0::real) \ 1 + 2 * x + x\<^sup>2" by sos -lemma "(0::real) < 1 + abs x" +lemma "(0::real) < 1 + \x\" by sos -lemma "(0::real) < 1 + (1 + x)^2 * (abs x)" +lemma "(0::real) < 1 + (1 + x)\<^sup>2 * \x\" by sos -lemma "abs ((1::real) + x^2) = (1::real) + x^2" +lemma "\(1::real) + x\<^sup>2\ = (1::real) + x\<^sup>2" by sos + lemma "(3::real) * x + 7 * a < 4 \ 3 < 2 * x \ a < 0" by sos -lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z" +lemma "(0::real) < x \ 1 < y \ y * x \ z \ x < z" by sos -lemma "(1::real) < x --> x^2 < y --> 1 < y" + +lemma "(1::real) < x \ x\<^sup>2 < y \ 1 < y" by sos -lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" + +lemma "(b::real)\<^sup>2 < 4 * a * c \ a * x\<^sup>2 + b * x + c \ 0" by sos -lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" - by sos -lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c" + +lemma "(b::real)\<^sup>2 < 4 * a * c \ a * x\<^sup>2 + b * x + c \ 0" by sos -lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x" + +lemma "(a::real) * x\<^sup>2 + b * x + c = 0 \ b\<^sup>2 \ 4 * a * c" by sos -lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)" + +lemma "(0::real) \ b \ 0 \ c \ 0 \ x \ 0 \ y \ x\<^sup>2 = c \ y\<^sup>2 = a\<^sup>2 * c + b \ a * c \ y * x" by sos +lemma "\x - z\ \ e \ \y - z\ \ e \ 0 \ u \ 0 \ v \ u + v = 1 --> \(u * x + v * y) - z\ \ (e::real)" + by sos -(* lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*) +lemma "(x::real) - y - 2 * x^4 = 0 \ 0 \ x \ x \ 2 \ 0 \ y \ y \ 3 \ y\<^sup>2 - 7 * y - 12 * x + 17 \ 0" + oops (*Too hard?*) -lemma "(0::real) <= x --> (1 + x + x^2)/(1 + x^2) <= 1 + x" +lemma "(0::real) \ x \ (1 + x + x\<^sup>2) / (1 + x\<^sup>2) \ 1 + x" by sos -lemma "(0::real) <= x --> 1 - x <= 1 / (1 + x + x^2)" +lemma "(0::real) \ x \ 1 - x \ 1 / (1 + x + x\<^sup>2)" by sos -lemma "(x::real) <= 1 / 2 --> - x - 2 * x^2 <= - x / (1 - x)" +lemma "(x::real) \ 1 / 2 \ - x - 2 * x\<^sup>2 \ - x / (1 - x)" by sos -lemma "4*r^2 = p^2 - 4*q & r >= (0::real) & x^2 + p*x + q = 0 --> 2*(x::real) = - p + 2*r | 2*x = -p - 2*r" +lemma "4 * r\<^sup>2 = p\<^sup>2 - 4 * q \ r \ (0::real) \ x\<^sup>2 + p * x + q = 0 \ + 2 * (x::real) = - p + 2 * r \ 2 * x = - p - 2 * r" by sos end - diff -r 9e81e87f755b -r 931b732617a2 src/HOL/ex/SOS_Cert.thy --- a/src/HOL/ex/SOS_Cert.thy Thu Sep 10 17:52:31 2015 +0200 +++ b/src/HOL/ex/SOS_Cert.thy Fri Sep 11 11:12:08 2015 +0200 @@ -9,122 +9,134 @@ imports "~~/src/HOL/Library/Sum_of_Squares" begin -lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \ a < 0" +lemma "(3::real) * x + 7 * a < 4 \ 3 < 2 * x \ a < 0" by (sos "((R<1 + (((A<1 * R<1) * (R<2 * [1]^2)) + (((A<0 * R<1) * (R<3 * [1]^2)) + ((A<=0 * R<1) * (R<14 * [1]^2))))))") -lemma "a1 >= 0 & a2 >= 0 \ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \ (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)" +lemma "a1 \ 0 \ a2 \ 0 \ (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \ (a1 * b1 + a2 * b2 = 0) \ + a1 * a2 - b1 * b2 \ (0::real)" by (sos "(((A<0 * R<1) + (([~1/2*a1*b2 + ~1/2*a2*b1] * A=0) + (([~1/2*a1*a2 + 1/2*b1*b2] * A=1) + (((A<0 * R<1) * ((R<1/2 * [b2]^2) + (R<1/2 * [b1]^2))) + ((A<=0 * (A<=1 * R<1)) * ((R<1/2 * [b2]^2) + ((R<1/2 * [b1]^2) + ((R<1/2 * [a2]^2) + (R<1/2 * [a1]^2))))))))))") -lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0" +lemma "(3::real) * x + 7 * a < 4 \ 3 < 2 * x \ a < 0" by (sos "((R<1 + (((A<1 * R<1) * (R<2 * [1]^2)) + (((A<0 * R<1) * (R<3 * [1]^2)) + ((A<=0 * R<1) * (R<14 * [1]^2))))))") -lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1 --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1" +lemma "(0::real) \ x \ x \ 1 \ 0 \ y \ y \ 1 \ + x\<^sup>2 + y\<^sup>2 < 1 \ (x - 1)\<^sup>2 + y\<^sup>2 < 1 \ x\<^sup>2 + (y - 1)\<^sup>2 < 1 \ (x - 1)\<^sup>2 + (y - 1)\<^sup>2 < 1" by (sos "((R<1 + (((A<=3 * (A<=4 * R<1)) * (R<1 * [1]^2)) + (((A<=2 * (A<=7 * R<1)) * (R<1 * [1]^2)) + (((A<=1 * (A<=6 * R<1)) * (R<1 * [1]^2)) + ((A<=0 * (A<=5 * R<1)) * (R<1 * [1]^2)))))))") -lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z" +lemma "(0::real) \ x \ 0 \ y \ 0 \ z \ x + y + z \ 3 \ x * y + x * z + y * z \ 3 * x * y * z" by (sos "(((A<0 * R<1) + (((A<0 * R<1) * (R<1/2 * [1]^2)) + (((A<=2 * R<1) * (R<1/2 * [~1*x + y]^2)) + (((A<=1 * R<1) * (R<1/2 * [~1*x + z]^2)) + (((A<=1 * (A<=2 * (A<=3 * R<1))) * (R<1/2 * [1]^2)) + (((A<=0 * R<1) * (R<1/2 * [~1*y + z]^2)) + (((A<=0 * (A<=2 * (A<=3 * R<1))) * (R<1/2 * [1]^2)) + ((A<=0 * (A<=1 * (A<=3 * R<1))) * (R<1/2 * [1]^2))))))))))") -lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3" +lemma "(x::real)\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \ (x + y + z)\<^sup>2 \ 3" by (sos "(((A<0 * R<1) + (([~3] * A=0) + (R<1 * ((R<2 * [~1/2*x + ~1/2*y + z]^2) + (R<3/2 * [~1*x + y]^2))))))") -lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)" +lemma "w\<^sup>2 + x\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \ (w + x + y + z)\<^sup>2 \ (4::real)" by (sos "(((A<0 * R<1) + (([~4] * A=0) + (R<1 * ((R<3 * [~1/3*w + ~1/3*x + ~1/3*y + z]^2) + ((R<8/3 * [~1/2*w + ~1/2*x + y]^2) + (R<2 * [~1*w + x]^2)))))))") -lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1" +lemma "(x::real) \ 1 \ y \ 1 \ x * y \ x + y - 1" by (sos "(((A<0 * R<1) + ((A<=0 * (A<=1 * R<1)) * (R<1 * [1]^2))))") -lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1" +lemma "(x::real) > 1 \ y > 1 \ x * y > x + y - 1" by (sos "((((A<0 * A<1) * R<1) + ((A<=0 * R<1) * (R<1 * [1]^2))))") -lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)" +lemma "\x\ \ 1 \ \64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x\ \ (1::real)" by (sos "((((A<0 * R<1) + ((A<=1 * R<1) * (R<1 * [~8*x^3 + ~4*x^2 + 4*x + 1]^2)))) & ((((A<0 * A<1) * R<1) + ((A<=1 * (A<0 * R<1)) * (R<1 * [8*x^3 + ~4*x^2 + ~4*x + 1]^2)))))") text \One component of denominator in dodecahedral example.\ -lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)" +lemma "2 \ x \ x \ 125841 / 50000 \ 2 \ y \ y \ 125841 / 50000 \ 2 \ z \ z \ 125841 / 50000 \ + 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) \ (0::real)" by (sos "(((A<0 * R<1) + ((R<1 * ((R<5749028157/5000000000 * [~25000/222477*x + ~25000/222477*y + ~25000/222477*z + 1]^2) + ((R<864067/1779816 * [419113/864067*x + 419113/864067*y + z]^2) + ((R<320795/864067 * [419113/1283180*x + y]^2) + (R<1702293/5132720 * [x]^2))))) + (((A<=4 * (A<=5 * R<1)) * (R<3/2 * [1]^2)) + (((A<=3 * (A<=5 * R<1)) * (R<1/2 * [1]^2)) + (((A<=2 * (A<=4 * R<1)) * (R<1 * [1]^2)) + (((A<=2 * (A<=3 * R<1)) * (R<3/2 * [1]^2)) + (((A<=1 * (A<=5 * R<1)) * (R<1/2 * [1]^2)) + (((A<=1 * (A<=3 * R<1)) * (R<1/2 * [1]^2)) + (((A<=0 * (A<=4 * R<1)) * (R<1 * [1]^2)) + (((A<=0 * (A<=2 * R<1)) * (R<1 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<3/2 * [1]^2)))))))))))))") text \Over a larger but simpler interval.\ -lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" +lemma "(2::real) \ x \ x \ 4 \ 2 \ y \ y \ 4 \ 2 \ z \ z \ 4 \ + 0 \ 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" by (sos "((R<1 + ((R<1 * ((R<1 * [~1/6*x + ~1/6*y + ~1/6*z + 1]^2) + ((R<1/18 * [~1/2*x + ~1/2*y + z]^2) + (R<1/24 * [~1*x + y]^2)))) + (((A<0 * R<1) * (R<1/12 * [1]^2)) + (((A<=4 * (A<=5 * R<1)) * (R<1/6 * [1]^2)) + (((A<=2 * (A<=4 * R<1)) * (R<1/6 * [1]^2)) + (((A<=2 * (A<=3 * R<1)) * (R<1/6 * [1]^2)) + (((A<=0 * (A<=4 * R<1)) * (R<1/6 * [1]^2)) + (((A<=0 * (A<=2 * R<1)) * (R<1/6 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<1/6 * [1]^2)))))))))))") text \We can do 12. I think 12 is a sharp bound; see PP's certificate.\ -lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" +lemma "2 \ (x::real) \ x \ 4 \ 2 \ y \ y \ 4 \ 2 \ z \ z \ 4 \ + 12 \ 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" by (sos "(((A<0 * R<1) + (((A<=4 * R<1) * (R<2/3 * [1]^2)) + (((A<=4 * (A<=5 * R<1)) * (R<1 * [1]^2)) + (((A<=3 * (A<=4 * R<1)) * (R<1/3 * [1]^2)) + (((A<=2 * R<1) * (R<2/3 * [1]^2)) + (((A<=2 * (A<=5 * R<1)) * (R<1/3 * [1]^2)) + (((A<=2 * (A<=4 * R<1)) * (R<8/3 * [1]^2)) + (((A<=2 * (A<=3 * R<1)) * (R<1 * [1]^2)) + (((A<=1 * (A<=4 * R<1)) * (R<1/3 * [1]^2)) + (((A<=1 * (A<=2 * R<1)) * (R<1/3 * [1]^2)) + (((A<=0 * R<1) * (R<2/3 * [1]^2)) + (((A<=0 * (A<=5 * R<1)) * (R<1/3 * [1]^2)) + (((A<=0 * (A<=4 * R<1)) * (R<8/3 * [1]^2)) + (((A<=0 * (A<=3 * R<1)) * (R<1/3 * [1]^2)) + (((A<=0 * (A<=2 * R<1)) * (R<8/3 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<1 * [1]^2))))))))))))))))))") text \Inequality from sci.math (see "Leon-Sotelo, por favor").\ -lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2" +lemma "0 \ (x::real) \ 0 \ y \ x * y = 1 \ x + y \ x\<^sup>2 + y\<^sup>2" by (sos "(((A<0 * R<1) + (([1] * A=0) + (R<1 * ((R<1 * [~1/2*x + ~1/2*y + 1]^2) + (R<3/4 * [~1*x + y]^2))))))") -lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2" +lemma "0 \ (x::real) \ 0 \ y \ x * y = 1 \ x * y * (x + y) \ x\<^sup>2 + y\<^sup>2" by (sos "(((A<0 * R<1) + (([~1*x + ~1*y + 1] * A=0) + (R<1 * ((R<1 * [~1/2*x + ~1/2*y + 1]^2) + (R<3/4 * [~1*x + y]^2))))))") -lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2" +lemma "0 \ (x::real) \ 0 \ y \ x * y * (x + y)\<^sup>2 \ (x\<^sup>2 + y\<^sup>2)\<^sup>2" by (sos "(((A<0 * R<1) + (R<1 * ((R<1 * [~1/2*x^2 + y^2 + ~1/2*x*y]^2) + (R<3/4 * [~1*x^2 + x*y]^2)))))") -lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \ c * a^2 * b <= x" +lemma "(0::real) \ a \ 0 \ b \ 0 \ c \ c * (2 * a + b)^3 / 27 \ x \ c * a\<^sup>2 * b \ x" by (sos "(((A<0 * R<1) + (((A<=3 * R<1) * (R<1 * [1]^2)) + (((A<=1 * (A<=2 * R<1)) * (R<1/27 * [~1*a + b]^2)) + ((A<=0 * (A<=2 * R<1)) * (R<8/27 * [~1*a + b]^2))))))") -lemma "(0::real) < x --> 0 < 1 + x + x^2" +lemma "(0::real) < x \ 0 < 1 + x + x\<^sup>2" by (sos "((R<1 + ((R<1 * (R<1 * [x]^2)) + (((A<0 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))") -lemma "(0::real) <= x --> 0 < 1 + x + x^2" +lemma "(0::real) \ x \ 0 < 1 + x + x\<^sup>2" by (sos "((R<1 + ((R<1 * (R<1 * [x]^2)) + (((A<=1 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))") -lemma "(0::real) < 1 + x^2" +lemma "(0::real) < 1 + x\<^sup>2" by (sos "((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2)))))") -lemma "(0::real) <= 1 + 2 * x + x^2" +lemma "(0::real) \ 1 + 2 * x + x\<^sup>2" by (sos "(((A<0 * R<1) + (R<1 * (R<1 * [x + 1]^2))))") -lemma "(0::real) < 1 + abs x" +lemma "(0::real) < 1 + \x\" by (sos "((R<1 + (((A<=1 * R<1) * (R<1/2 * [1]^2)) + ((A<=0 * R<1) * (R<1/2 * [1]^2)))))") -lemma "(0::real) < 1 + (1 + x)^2 * (abs x)" +lemma "(0::real) < 1 + (1 + x)\<^sup>2 * \x\" by (sos "(((R<1 + (((A<=1 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [x + 1]^2))))) & ((R<1 + (((A<0 * R<1) * (R<1 * [x + 1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))") -lemma "abs ((1::real) + x^2) = (1::real) + x^2" +lemma "\(1::real) + x\<^sup>2\ = (1::real) + x\<^sup>2" by (sos "(() & (((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<1 * R<1) * (R<1/2 * [1]^2))))) & ((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<0 * R<1) * (R<1 * [1]^2)))))))") + lemma "(3::real) * x + 7 * a < 4 \ 3 < 2 * x \ a < 0" by (sos "((R<1 + (((A<1 * R<1) * (R<2 * [1]^2)) + (((A<0 * R<1) * (R<3 * [1]^2)) + ((A<=0 * R<1) * (R<14 * [1]^2))))))") -lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z" +lemma "(0::real) < x \ 1 < y \ y * x \ z \ x < z" by (sos "((((A<0 * A<1) * R<1) + (((A<=1 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2)))))") -lemma "(1::real) < x --> x^2 < y --> 1 < y" + +lemma "(1::real) < x \ x\<^sup>2 < y \ 1 < y" by (sos "((((A<0 * A<1) * R<1) + ((R<1 * ((R<1/10 * [~2*x + y + 1]^2) + (R<1/10 * [~1*x + y]^2))) + (((A<1 * R<1) * (R<1/2 * [1]^2)) + (((A<0 * R<1) * (R<1 * [x]^2)) + (((A<=0 * R<1) * ((R<1/10 * [x + 1]^2) + (R<1/10 * [x]^2))) + (((A<=0 * (A<1 * R<1)) * (R<1/5 * [1]^2)) + ((A<=0 * (A<0 * R<1)) * (R<1/5 * [1]^2)))))))))") -lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" + +lemma "(b::real)\<^sup>2 < 4 * a * c \ a * x\<^sup>2 + b * x + c \ 0" by (sos "(((A<0 * R<1) + (R<1 * (R<1 * [2*a*x + b]^2))))") -lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" + +lemma "(b::real)\<^sup>2 < 4 * a * c \ a * x^2 + b * x + c \ 0" by (sos "(((A<0 * R<1) + (R<1 * (R<1 * [2*a*x + b]^2))))") -lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c" + +lemma "(a::real) * x\<^sup>2 + b * x + c = 0 \ b\<^sup>2 \ 4 * a * c" by (sos "(((A<0 * R<1) + (R<1 * (R<1 * [2*a*x + b]^2))))") -lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x" + +lemma "(0::real) \ b \ 0 \ c \ 0 \ x \ 0 \ y \ x\<^sup>2 = c \ y\<^sup>2 = a\<^sup>2 * c + b \ a * c \ y * x" by (sos "(((A<0 * (A<0 * R<1)) + (((A<=2 * (A<=3 * (A<0 * R<1))) * (R<2 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<1 * [1]^2)))))") -lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)" + +lemma "\x - z\ \ e \ \y - z\ \ e \ 0 \ u \ 0 \ v \ u + v = 1 \ \(u * x + v * y) - z\ \ (e::real)" by (sos "((((A<0 * R<1) + (((A<=3 * (A<=6 * R<1)) * (R<1 * [1]^2)) + ((A<=1 * (A<=5 * R<1)) * (R<1 * [1]^2))))) & ((((A<0 * A<1) * R<1) + (((A<=3 * (A<=5 * (A<0 * R<1))) * (R<1 * [1]^2)) + ((A<=1 * (A<=4 * (A<0 * R<1))) * (R<1 * [1]^2))))))") -(* lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*) +lemma "(x::real) - y - 2 * x^4 = 0 \ 0 \ x \ x \ 2 \ 0 \ y \ y \ 3 \ y\<^sup>2 - 7 * y - 12 * x + 17 \ 0" + oops (*Too hard?*) -lemma "(0::real) <= x --> (1 + x + x^2)/(1 + x^2) <= 1 + x" +lemma "(0::real) \ x \ (1 + x + x\<^sup>2) / (1 + x\<^sup>2) \ 1 + x" by (sos "(((((A<0 * A<1) * R<1) + ((A<=0 * (A<0 * R<1)) * (R<1 * [x]^2)))) & ((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<0 * R<1) * (R<1 * [1]^2))))))") -lemma "(0::real) <= x --> 1 - x <= 1 / (1 + x + x^2)" +lemma "(0::real) \ x \ 1 - x \ 1 / (1 + x + x\<^sup>2)" by (sos "(((R<1 + (([~4/3] * A=0) + ((R<1 * ((R<1/3 * [3/2*x + 1]^2) + (R<7/12 * [x]^2))) + ((A<=0 * R<1) * (R<1/3 * [1]^2)))))) & (((((A<0 * A<1) * R<1) + ((A<=0 * (A<0 * R<1)) * (R<1 * [x]^2)))) & ((R<1 + ((R<1 * (R<1 * [x]^2)) + (((A<0 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))))") -lemma "(x::real) <= 1 / 2 --> - x - 2 * x^2 <= - x / (1 - x)" +lemma "(x::real) \ 1 / 2 \ - x - 2 * x\<^sup>2 \ - x / (1 - x)" by (sos "((((A<0 * A<1) * R<1) + ((A<=0 * (A<0 * R<1)) * (R<1 * [x]^2))))") -lemma "4*r^2 = p^2 - 4*q & r >= (0::real) & x^2 + p*x + q = 0 --> 2*(x::real) = - p + 2*r | 2*x = -p - 2*r" +lemma "4 * r\<^sup>2 = p\<^sup>2 - 4 * q \ r \ (0::real) \ x\<^sup>2 + p * x + q = 0 \ 2 * (x::real) = - p + 2 * r \ 2 * x = - p - 2 * r" by (sos "((((((A<0 * A<1) * R<1) + ([~4] * A=0))) & ((((A<0 * A<1) * R<1) + ([4] * A=0)))) & (((((A<0 * A<1) * R<1) + ([4] * A=0))) & ((((A<0 * A<1) * R<1) + ([~4] * A=0)))))") end -