# HG changeset patch # User bulwahn # Date 1307437925 -7200 # Node ID 93b1183e43e548107c90af993c28ab187dede129 # Parent da47097bd589f029b81980a038078df4d9d98715 splitting Cset into Cset and List_Cset diff -r da47097bd589 -r 93b1183e43e5 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Tue Jun 07 11:11:01 2011 +0200 +++ b/src/HOL/IsaMakefile Tue Jun 07 11:12:05 2011 +0200 @@ -453,7 +453,7 @@ Library/Indicator_Function.thy Library/Infinite_Set.thy \ Library/Inner_Product.thy Library/Kleene_Algebra.thy \ Library/LaTeXsugar.thy Library/Lattice_Algebras.thy \ - Library/Lattice_Syntax.thy Library/Library.thy \ + Library/Lattice_Syntax.thy Library/Library.thy Library/List_Cset.thy \ Library/List_Prefix.thy Library/List_lexord.thy Library/Mapping.thy \ Library/Monad_Syntax.thy Library/More_List.thy Library/More_Set.thy \ Library/Multiset.thy Library/Nat_Bijection.thy \ diff -r da47097bd589 -r 93b1183e43e5 src/HOL/Library/Cset.thy --- a/src/HOL/Library/Cset.thy Tue Jun 07 11:11:01 2011 +0200 +++ b/src/HOL/Library/Cset.thy Tue Jun 07 11:12:05 2011 +0200 @@ -35,66 +35,6 @@ by (simp add: Cset.set_eq_iff) hide_fact (open) set_eqI -declare mem_def [simp] - -definition set :: "'a list \ 'a Cset.set" where - "set xs = Set (List.set xs)" -hide_const (open) set - -lemma member_set [simp]: - "member (Cset.set xs) = set xs" - by (simp add: set_def) -hide_fact (open) member_set - -definition coset :: "'a list \ 'a Cset.set" where - "coset xs = Set (- set xs)" -hide_const (open) coset - -lemma member_coset [simp]: - "member (Cset.coset xs) = - set xs" - by (simp add: coset_def) -hide_fact (open) member_coset - -code_datatype Cset.set Cset.coset - -lemma member_code [code]: - "member (Cset.set xs) = List.member xs" - "member (Cset.coset xs) = Not \ List.member xs" - by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def) - -lemma member_image_UNIV [simp]: - "member ` UNIV = UNIV" -proof - - have "\A \ 'a set. \B \ 'a Cset.set. A = member B" - proof - fix A :: "'a set" - show "A = member (Set A)" by simp - qed - then show ?thesis by (simp add: image_def) -qed - -definition (in term_syntax) - setify :: "'a\typerep list \ (unit \ Code_Evaluation.term) - \ 'a Cset.set \ (unit \ Code_Evaluation.term)" where - [code_unfold]: "setify xs = Code_Evaluation.valtermify Cset.set {\} xs" - -notation fcomp (infixl "\>" 60) -notation scomp (infixl "\\" 60) - -instantiation Cset.set :: (random) random -begin - -definition - "Quickcheck.random i = Quickcheck.random i \\ (\xs. Pair (setify xs))" - -instance .. - -end - -no_notation fcomp (infixl "\>" 60) -no_notation scomp (infixl "\\" 60) - - subsection {* Lattice instantiation *} instantiation Cset.set :: (type) boolean_algebra @@ -149,185 +89,39 @@ definition is_empty :: "'a Cset.set \ bool" where [simp]: "is_empty A \ More_Set.is_empty (member A)" -lemma is_empty_set [code]: - "is_empty (Cset.set xs) \ List.null xs" - by (simp add: is_empty_set) -hide_fact (open) is_empty_set - -lemma empty_set [code]: - "bot = Cset.set []" - by (simp add: set_def) -hide_fact (open) empty_set - -lemma UNIV_set [code]: - "top = Cset.coset []" - by (simp add: coset_def) -hide_fact (open) UNIV_set - definition insert :: "'a \ 'a Cset.set \ 'a Cset.set" where [simp]: "insert x A = Set (Set.insert x (member A))" -lemma insert_set [code]: - "insert x (Cset.set xs) = Cset.set (List.insert x xs)" - "insert x (Cset.coset xs) = Cset.coset (removeAll x xs)" - by (simp_all add: set_def coset_def) - definition remove :: "'a \ 'a Cset.set \ 'a Cset.set" where [simp]: "remove x A = Set (More_Set.remove x (member A))" -lemma remove_set [code]: - "remove x (Cset.set xs) = Cset.set (removeAll x xs)" - "remove x (Cset.coset xs) = Cset.coset (List.insert x xs)" - by (simp_all add: set_def coset_def remove_set_compl) - (simp add: More_Set.remove_def) - definition map :: "('a \ 'b) \ 'a Cset.set \ 'b Cset.set" where [simp]: "map f A = Set (image f (member A))" -lemma map_set [code]: - "map f (Cset.set xs) = Cset.set (remdups (List.map f xs))" - by (simp add: set_def) - enriched_type map: map by (simp_all add: fun_eq_iff image_compose) definition filter :: "('a \ bool) \ 'a Cset.set \ 'a Cset.set" where [simp]: "filter P A = Set (More_Set.project P (member A))" -lemma filter_set [code]: - "filter P (Cset.set xs) = Cset.set (List.filter P xs)" - by (simp add: set_def project_set) - definition forall :: "('a \ bool) \ 'a Cset.set \ bool" where [simp]: "forall P A \ Ball (member A) P" -lemma forall_set [code]: - "forall P (Cset.set xs) \ list_all P xs" - by (simp add: set_def list_all_iff) - definition exists :: "('a \ bool) \ 'a Cset.set \ bool" where [simp]: "exists P A \ Bex (member A) P" -lemma exists_set [code]: - "exists P (Cset.set xs) \ list_ex P xs" - by (simp add: set_def list_ex_iff) - definition card :: "'a Cset.set \ nat" where [simp]: "card A = Finite_Set.card (member A)" - -lemma card_set [code]: - "card (Cset.set xs) = length (remdups xs)" -proof - - have "Finite_Set.card (set (remdups xs)) = length (remdups xs)" - by (rule distinct_card) simp - then show ?thesis by (simp add: set_def) -qed - -lemma compl_set [simp, code]: - "- Cset.set xs = Cset.coset xs" - by (simp add: set_def coset_def) - -lemma compl_coset [simp, code]: - "- Cset.coset xs = Cset.set xs" - by (simp add: set_def coset_def) - - -subsection {* Derived operations *} - -lemma subset_eq_forall [code]: - "A \ B \ forall (member B) A" - by (simp add: subset_eq) - -lemma subset_subset_eq [code]: - "A < B \ A \ B \ \ B \ (A :: 'a Cset.set)" - by (fact less_le_not_le) - -instantiation Cset.set :: (type) equal -begin - -definition [code]: - "HOL.equal A B \ A \ B \ B \ (A :: 'a Cset.set)" - -instance proof -qed (simp add: equal_set_def set_eq [symmetric] Cset.set_eq_iff) - -end - -lemma [code nbe]: - "HOL.equal (A :: 'a Cset.set) A \ True" - by (fact equal_refl) - - -subsection {* Functorial operations *} - -lemma inter_project [code]: - "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)" - "inf A (Cset.coset xs) = foldr remove xs A" -proof - - show "inf A (Cset.set xs) = Cset.set (List.filter (member A) xs)" - by (simp add: inter project_def set_def) - have *: "\x::'a. remove = (\x. Set \ More_Set.remove x \ member)" - by (simp add: fun_eq_iff) - have "member \ fold (\x. Set \ More_Set.remove x \ member) xs = - fold More_Set.remove xs \ member" - by (rule fold_commute) (simp add: fun_eq_iff) - then have "fold More_Set.remove xs (member A) = - member (fold (\x. Set \ More_Set.remove x \ member) xs A)" - by (simp add: fun_eq_iff) - then have "inf A (Cset.coset xs) = fold remove xs A" - by (simp add: Diff_eq [symmetric] minus_set *) - moreover have "\x y :: 'a. Cset.remove y \ Cset.remove x = Cset.remove x \ Cset.remove y" - by (auto simp add: More_Set.remove_def * intro: ext) - ultimately show "inf A (Cset.coset xs) = foldr remove xs A" - by (simp add: foldr_fold) -qed - -lemma subtract_remove [code]: - "A - Cset.set xs = foldr remove xs A" - "A - Cset.coset xs = Cset.set (List.filter (member A) xs)" - by (simp_all only: diff_eq compl_set compl_coset inter_project) - -lemma union_insert [code]: - "sup (Cset.set xs) A = foldr insert xs A" - "sup (Cset.coset xs) A = Cset.coset (List.filter (Not \ member A) xs)" -proof - - have *: "\x::'a. insert = (\x. Set \ Set.insert x \ member)" - by (simp add: fun_eq_iff) - have "member \ fold (\x. Set \ Set.insert x \ member) xs = - fold Set.insert xs \ member" - by (rule fold_commute) (simp add: fun_eq_iff) - then have "fold Set.insert xs (member A) = - member (fold (\x. Set \ Set.insert x \ member) xs A)" - by (simp add: fun_eq_iff) - then have "sup (Cset.set xs) A = fold insert xs A" - by (simp add: union_set *) - moreover have "\x y :: 'a. Cset.insert y \ Cset.insert x = Cset.insert x \ Cset.insert y" - by (auto simp add: * intro: ext) - ultimately show "sup (Cset.set xs) A = foldr insert xs A" - by (simp add: foldr_fold) - show "sup (Cset.coset xs) A = Cset.coset (List.filter (Not \ member A) xs)" - by (auto simp add: coset_def) -qed - + context complete_lattice begin definition Infimum :: "'a Cset.set \ 'a" where [simp]: "Infimum A = Inf (member A)" -lemma Infimum_inf [code]: - "Infimum (Cset.set As) = foldr inf As top" - "Infimum (Cset.coset []) = bot" - by (simp_all add: Inf_set_foldr Inf_UNIV) - definition Supremum :: "'a Cset.set \ 'a" where [simp]: "Supremum A = Sup (member A)" -lemma Supremum_sup [code]: - "Supremum (Cset.set As) = foldr sup As bot" - "Supremum (Cset.coset []) = top" - by (simp_all add: Sup_set_foldr Sup_UNIV) - end @@ -351,7 +145,7 @@ declare mem_def [simp del] -hide_const (open) setify is_empty insert remove map filter forall exists card +hide_const (open) is_empty insert remove map filter forall exists card Inter Union end diff -r da47097bd589 -r 93b1183e43e5 src/HOL/Library/Dlist_Cset.thy --- a/src/HOL/Library/Dlist_Cset.thy Tue Jun 07 11:11:01 2011 +0200 +++ b/src/HOL/Library/Dlist_Cset.thy Tue Jun 07 11:12:05 2011 +0200 @@ -3,21 +3,21 @@ header {* Canonical implementation of sets by distinct lists *} theory Dlist_Cset -imports Dlist Cset +imports Dlist List_Cset begin definition Set :: "'a dlist \ 'a Cset.set" where - "Set dxs = Cset.set (list_of_dlist dxs)" + "Set dxs = List_Cset.set (list_of_dlist dxs)" definition Coset :: "'a dlist \ 'a Cset.set" where - "Coset dxs = Cset.coset (list_of_dlist dxs)" + "Coset dxs = List_Cset.coset (list_of_dlist dxs)" code_datatype Set Coset declare member_code [code del] -declare Cset.is_empty_set [code del] -declare Cset.empty_set [code del] -declare Cset.UNIV_set [code del] +declare List_Cset.is_empty_set [code del] +declare List_Cset.empty_set [code del] +declare List_Cset.UNIV_set [code del] declare insert_set [code del] declare remove_set [code del] declare compl_set [code del] @@ -50,11 +50,11 @@ by (simp add: Coset_def member_set not_set_compl) lemma Set_dlist_of_list [code]: - "Cset.set xs = Set (dlist_of_list xs)" + "List_Cset.set xs = Set (dlist_of_list xs)" by (rule Cset.set_eqI) simp lemma Coset_dlist_of_list [code]: - "Cset.coset xs = Coset (dlist_of_list xs)" + "List_Cset.coset xs = Coset (dlist_of_list xs)" by (rule Cset.set_eqI) simp lemma is_empty_Set [code]: diff -r da47097bd589 -r 93b1183e43e5 src/HOL/Library/Library.thy --- a/src/HOL/Library/Library.thy Tue Jun 07 11:11:01 2011 +0200 +++ b/src/HOL/Library/Library.thy Tue Jun 07 11:12:05 2011 +0200 @@ -29,6 +29,7 @@ Lattice_Algebras Lattice_Syntax ListVector + List_Cset Kleene_Algebra Mapping Monad_Syntax diff -r da47097bd589 -r 93b1183e43e5 src/HOL/Library/List_Cset.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/List_Cset.thy Tue Jun 07 11:12:05 2011 +0200 @@ -0,0 +1,222 @@ + +(* Author: Florian Haftmann, TU Muenchen *) + +header {* implementation of Cset.sets based on lists *} + +theory List_Cset +imports Cset +begin + +declare mem_def [simp] + +definition set :: "'a list \ 'a Cset.set" where + "set xs = Set (List.set xs)" +hide_const (open) set + +lemma member_set [simp]: + "member (List_Cset.set xs) = set xs" + by (simp add: set_def) +hide_fact (open) member_set + +definition coset :: "'a list \ 'a Cset.set" where + "coset xs = Set (- set xs)" +hide_const (open) coset + +lemma member_coset [simp]: + "member (List_Cset.coset xs) = - set xs" + by (simp add: coset_def) +hide_fact (open) member_coset + +code_datatype List_Cset.set List_Cset.coset + +lemma member_code [code]: + "member (List_Cset.set xs) = List.member xs" + "member (List_Cset.coset xs) = Not \ List.member xs" + by (simp_all add: fun_eq_iff member_def fun_Compl_def bool_Compl_def) + +lemma member_image_UNIV [simp]: + "member ` UNIV = UNIV" +proof - + have "\A \ 'a set. \B \ 'a Cset.set. A = member B" + proof + fix A :: "'a set" + show "A = member (Set A)" by simp + qed + then show ?thesis by (simp add: image_def) +qed + +definition (in term_syntax) + setify :: "'a\typerep list \ (unit \ Code_Evaluation.term) + \ 'a Cset.set \ (unit \ Code_Evaluation.term)" where + [code_unfold]: "setify xs = Code_Evaluation.valtermify List_Cset.set {\} xs" + +notation fcomp (infixl "\>" 60) +notation scomp (infixl "\\" 60) + +instantiation Cset.set :: (random) random +begin + +definition + "Quickcheck.random i = Quickcheck.random i \\ (\xs. Pair (setify xs))" + +instance .. + +end + +no_notation fcomp (infixl "\>" 60) +no_notation scomp (infixl "\\" 60) + +subsection {* Basic operations *} + +lemma is_empty_set [code]: + "Cset.is_empty (List_Cset.set xs) \ List.null xs" + by (simp add: is_empty_set null_def) +hide_fact (open) is_empty_set + +lemma empty_set [code]: + "bot = List_Cset.set []" + by (simp add: set_def) +hide_fact (open) empty_set + +lemma UNIV_set [code]: + "top = List_Cset.coset []" + by (simp add: coset_def) +hide_fact (open) UNIV_set + +lemma remove_set [code]: + "Cset.remove x (List_Cset.set xs) = List_Cset.set (removeAll x xs)" + "Cset.remove x (List_Cset.coset xs) = List_Cset.coset (List.insert x xs)" +by (simp_all add: set_def coset_def) + (metis List.set_insert More_Set.remove_def remove_set_compl) + +lemma insert_set [code]: + "Cset.insert x (List_Cset.set xs) = List_Cset.set (List.insert x xs)" + "Cset.insert x (List_Cset.coset xs) = List_Cset.coset (removeAll x xs)" + by (simp_all add: set_def coset_def) + +lemma map_set [code]: + "Cset.map f (List_Cset.set xs) = List_Cset.set (remdups (List.map f xs))" + by (simp add: set_def) + +lemma filter_set [code]: + "Cset.filter P (List_Cset.set xs) = List_Cset.set (List.filter P xs)" + by (simp add: set_def project_set) + +lemma forall_set [code]: + "Cset.forall P (List_Cset.set xs) \ list_all P xs" + by (simp add: set_def list_all_iff) + +lemma exists_set [code]: + "Cset.exists P (List_Cset.set xs) \ list_ex P xs" + by (simp add: set_def list_ex_iff) + +lemma card_set [code]: + "Cset.card (List_Cset.set xs) = length (remdups xs)" +proof - + have "Finite_Set.card (set (remdups xs)) = length (remdups xs)" + by (rule distinct_card) simp + then show ?thesis by (simp add: set_def) +qed + +lemma compl_set [simp, code]: + "- List_Cset.set xs = List_Cset.coset xs" + by (simp add: set_def coset_def) + +lemma compl_coset [simp, code]: + "- List_Cset.coset xs = List_Cset.set xs" + by (simp add: set_def coset_def) + +context complete_lattice +begin + +lemma Infimum_inf [code]: + "Infimum (List_Cset.set As) = foldr inf As top" + "Infimum (List_Cset.coset []) = bot" + by (simp_all add: Inf_set_foldr Inf_UNIV) + +lemma Supremum_sup [code]: + "Supremum (List_Cset.set As) = foldr sup As bot" + "Supremum (List_Cset.coset []) = top" + by (simp_all add: Sup_set_foldr Sup_UNIV) + +end + + +subsection {* Derived operations *} + +lemma subset_eq_forall [code]: + "A \ B \ Cset.forall (member B) A" + by (simp add: subset_eq) + +lemma subset_subset_eq [code]: + "A < B \ A \ B \ \ B \ (A :: 'a Cset.set)" + by (fact less_le_not_le) + +instantiation Cset.set :: (type) equal +begin + +definition [code]: + "HOL.equal A B \ A \ B \ B \ (A :: 'a Cset.set)" + +instance proof +qed (simp add: equal_set_def set_eq [symmetric] Cset.set_eq_iff) + +end + +lemma [code nbe]: + "HOL.equal (A :: 'a Cset.set) A \ True" + by (fact equal_refl) + + +subsection {* Functorial operations *} + +lemma inter_project [code]: + "inf A (List_Cset.set xs) = List_Cset.set (List.filter (Cset.member A) xs)" + "inf A (List_Cset.coset xs) = foldr Cset.remove xs A" +proof - + show "inf A (List_Cset.set xs) = List_Cset.set (List.filter (member A) xs)" + by (simp add: inter project_def set_def) + have *: "\x::'a. Cset.remove = (\x. Set \ More_Set.remove x \ member)" + by (simp add: fun_eq_iff More_Set.remove_def) + have "member \ fold (\x. Set \ More_Set.remove x \ member) xs = + fold More_Set.remove xs \ member" + by (rule fold_commute) (simp add: fun_eq_iff) + then have "fold More_Set.remove xs (member A) = + member (fold (\x. Set \ More_Set.remove x \ member) xs A)" + by (simp add: fun_eq_iff) + then have "inf A (List_Cset.coset xs) = fold Cset.remove xs A" + by (simp add: Diff_eq [symmetric] minus_set *) + moreover have "\x y :: 'a. Cset.remove y \ Cset.remove x = Cset.remove x \ Cset.remove y" + by (auto simp add: More_Set.remove_def * intro: ext) + ultimately show "inf A (List_Cset.coset xs) = foldr Cset.remove xs A" + by (simp add: foldr_fold) +qed + +lemma subtract_remove [code]: + "A - List_Cset.set xs = foldr Cset.remove xs A" + "A - List_Cset.coset xs = List_Cset.set (List.filter (member A) xs)" + by (simp_all only: diff_eq compl_set compl_coset inter_project) + +lemma union_insert [code]: + "sup (List_Cset.set xs) A = foldr Cset.insert xs A" + "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \ member A) xs)" +proof - + have *: "\x::'a. Cset.insert = (\x. Set \ Set.insert x \ member)" + by (simp add: fun_eq_iff) + have "member \ fold (\x. Set \ Set.insert x \ member) xs = + fold Set.insert xs \ member" + by (rule fold_commute) (simp add: fun_eq_iff) + then have "fold Set.insert xs (member A) = + member (fold (\x. Set \ Set.insert x \ member) xs A)" + by (simp add: fun_eq_iff) + then have "sup (List_Cset.set xs) A = fold Cset.insert xs A" + by (simp add: union_set *) + moreover have "\x y :: 'a. Cset.insert y \ Cset.insert x = Cset.insert x \ Cset.insert y" + by (auto simp add: * intro: ext) + ultimately show "sup (List_Cset.set xs) A = foldr Cset.insert xs A" + by (simp add: foldr_fold) + show "sup (List_Cset.coset xs) A = List_Cset.coset (List.filter (Not \ member A) xs)" + by (auto simp add: coset_def) +qed + +end \ No newline at end of file