# HG changeset patch # User huffman # Date 1187632372 -7200 # Node ID 93d78fdeb55a99bce5aa9d865de134473f1d0823 # Parent 0fdabe28f0e6e1d27c9ea8c853f2da890ce425cd remove int_of_nat diff -r 0fdabe28f0e6 -r 93d78fdeb55a src/HOL/IntDef.thy --- a/src/HOL/IntDef.thy Mon Aug 20 19:52:24 2007 +0200 +++ b/src/HOL/IntDef.thy Mon Aug 20 19:52:52 2007 +0200 @@ -682,9 +682,4 @@ where "int \ of_nat" -abbreviation - int_of_nat :: "nat \ int" -where - "int_of_nat \ of_nat" - end diff -r 0fdabe28f0e6 -r 93d78fdeb55a src/HOL/Real/RComplete.thy --- a/src/HOL/Real/RComplete.thy Mon Aug 20 19:52:24 2007 +0200 +++ b/src/HOL/Real/RComplete.thy Mon Aug 20 19:52:52 2007 +0200 @@ -480,7 +480,7 @@ lemma floor_real_of_nat_zero [simp]: "floor (real (0::nat)) = 0" by auto -lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int_of_nat n" +lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n" apply (simp only: floor_def) apply (rule Least_equality) apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst]) @@ -488,7 +488,7 @@ apply simp_all done -lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int_of_nat n" +lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n" apply (simp only: floor_def) apply (rule Least_equality) apply (drule_tac [2] real_of_int_of_nat_eq [THEN ssubst]) @@ -753,7 +753,7 @@ lemma ceiling_zero [simp]: "ceiling 0 = 0" by (simp add: ceiling_def) -lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int_of_nat n" +lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n" by (simp add: ceiling_def) lemma ceiling_real_of_nat_zero [simp]: "ceiling (real (0::nat)) = 0" @@ -1043,7 +1043,7 @@ lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a" apply (unfold natfloor_def) - apply (subgoal_tac "real a = real (int_of_nat a)") + apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq) apply simp @@ -1065,7 +1065,7 @@ lemma natfloor_subtract [simp]: "real a <= x ==> natfloor(x - real a) = natfloor x - a" apply (unfold natfloor_def) - apply (subgoal_tac "real a = real (int_of_nat a)") + apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp del: real_of_int_of_nat_eq) apply simp @@ -1176,7 +1176,7 @@ lemma natceiling_add [simp]: "0 <= x ==> natceiling (x + real a) = natceiling x + a" apply (unfold natceiling_def) - apply (subgoal_tac "real a = real (int_of_nat a)") + apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp del: real_of_int_of_nat_eq) apply (subst nat_add_distrib) @@ -1202,7 +1202,7 @@ lemma natceiling_subtract [simp]: "real a <= x ==> natceiling(x - real a) = natceiling x - a" apply (unfold natceiling_def) - apply (subgoal_tac "real a = real (int_of_nat a)") + apply (subgoal_tac "real a = real (int a)") apply (erule ssubst) apply (simp del: real_of_int_of_nat_eq) apply simp