# HG changeset patch # User huffman # Date 1180482818 -7200 # Node ID 93f8cb025afdd38068e56f3e61decc5819a87ede # Parent 6f7b5b96241fa1834db5e9ffd10f9d62733b0531 renamed some lemmas in Complex.thy diff -r 6f7b5b96241f -r 93f8cb025afd src/HOL/Complex/NSComplex.thy --- a/src/HOL/Complex/NSComplex.thy Wed May 30 01:46:05 2007 +0200 +++ b/src/HOL/Complex/NSComplex.thy Wed May 30 01:53:38 2007 +0200 @@ -360,15 +360,15 @@ lemma hcomplexpow_Suc [simp]: "z ^ (Suc n) = (z::hcomplex) * (z ^ n)" by (rule power_Suc) -lemma hcomplexpow_i_squared [simp]: "iii ^ 2 = - 1" -by transfer (rule complexpow_i_squared) +lemma hcomplexpow_i_squared [simp]: "iii ^ 2 = -1" +by transfer (rule power2_i) lemma hcomplex_of_hypreal_pow: "!!x. hcomplex_of_hypreal (x ^ n) = (hcomplex_of_hypreal x) ^ n" by transfer (rule of_real_power) lemma hcomplex_hcnj_pow: "!!z. hcnj(z ^ n) = hcnj(z) ^ n" -by transfer (rule complex_cnj_pow) +by transfer (rule complex_cnj_power) lemma hcmod_hcomplexpow: "!!x. hcmod(x ^ n) = hcmod(x) ^ n" by transfer (rule norm_power) @@ -408,7 +408,7 @@ by transfer (rule sgn_eq) lemma hcmod_i: "!!x y. hcmod (HComplex x y) = ( *f* sqrt) (x ^ 2 + y ^ 2)" -by transfer (rule complex_mod) +by transfer (rule complex_norm) lemma hcomplex_eq_cancel_iff1 [simp]: "(hcomplex_of_hypreal xa = HComplex x y) = (xa = x & y = 0)" @@ -653,7 +653,7 @@ lemma hcomplex_hypreal_number_of: "hcomplex_of_complex (number_of w) = hcomplex_of_hypreal(number_of w)" -by transfer (rule complex_number_of [symmetric]) +by transfer (rule of_real_number_of_eq [symmetric]) (* Goal "z + hcnj z = @@ -759,18 +759,18 @@ lemma hcomplex_number_of_hcnj [simp]: "hcnj (number_of v :: hcomplex) = number_of v" -by transfer (rule complex_number_of_cnj) +by transfer (rule complex_cnj_number_of) lemma hcomplex_number_of_hcmod [simp]: "hcmod(number_of v :: hcomplex) = abs (number_of v :: hypreal)" -by transfer (rule complex_number_of_cmod) +by transfer (rule norm_number_of) lemma hcomplex_number_of_hRe [simp]: "hRe(number_of v :: hcomplex) = number_of v" -by transfer (rule complex_number_of_Re) +by transfer (rule complex_Re_number_of) lemma hcomplex_number_of_hIm [simp]: "hIm(number_of v :: hcomplex) = 0" -by transfer (rule complex_number_of_Im) +by transfer (rule complex_Im_number_of) end