# HG changeset patch # User hoelzl # Date 1291230773 -3600 # Node ID 94427db32392a2cc2027168e8079c4c5808559aa # Parent 251df82c0088d4195f12398c5bc9eb288cdfdbfd Tuned setup for borel_measurable with min, max and psuminf. diff -r 251df82c0088 -r 94427db32392 src/HOL/Probability/Borel_Space.thy --- a/src/HOL/Probability/Borel_Space.thy Wed Dec 01 20:09:41 2010 +0100 +++ b/src/HOL/Probability/Borel_Space.thy Wed Dec 01 20:12:53 2010 +0100 @@ -1016,7 +1016,6 @@ then obtain T x where T: "open T" "Real ` (T \ {0..}) = B - {\}" and x: "\ \ B \ 0 \ x" "\ \ B \ {Real x <..} \ B" unfolding open_pinfreal_def by blast - have "Real -` B = Real -` (B - {\})" by auto also have "\ = Real -` (Real ` (T \ {0..}))" using T by simp also have "\ = (if 0 \ T then T \ {.. 0} else T \ {0..})" @@ -1222,12 +1221,10 @@ hence **: "\a. {x\space M. f x < a} \ sets M" unfolding less_eq_le_pinfreal_measurable unfolding greater_eq_le_measurable . - show "f \ borel_measurable M" unfolding borel_measurable_pinfreal_eq_real borel_measurable_iff_greater proof safe have "f -` {\} \ space M = space M - {x\space M. f x < \}" by auto then show \: "f -` {\} \ space M \ sets M" using ** by auto - fix a have "{w \ space M. a < real (f w)} = (if 0 \ a then {w\space M. Real a < f w} - (f -` {\} \ space M) else space M)" @@ -1358,14 +1355,14 @@ by induct auto qed (simp add: borel_measurable_const) -lemma (in sigma_algebra) borel_measurable_pinfreal_min[intro, simp]: +lemma (in sigma_algebra) borel_measurable_pinfreal_min[simp, intro]: fixes f g :: "'a \ pinfreal" assumes "f \ borel_measurable M" assumes "g \ borel_measurable M" shows "(\x. min (g x) (f x)) \ borel_measurable M" using assms unfolding min_def by (auto intro!: measurable_If) -lemma (in sigma_algebra) borel_measurable_pinfreal_max[intro]: +lemma (in sigma_algebra) borel_measurable_pinfreal_max[simp, intro]: fixes f g :: "'a \ pinfreal" assumes "f \ borel_measurable M" and "g \ borel_measurable M" @@ -1412,7 +1409,7 @@ using assms by auto qed -lemma (in sigma_algebra) borel_measurable_psuminf: +lemma (in sigma_algebra) borel_measurable_psuminf[simp, intro]: assumes "\i. f i \ borel_measurable M" shows "(\x. (\\<^isub>\ i. f i x)) \ borel_measurable M" using assms unfolding psuminf_def @@ -1428,7 +1425,6 @@ proof - let "?pu x i" = "max (u i x) 0" let "?nu x i" = "max (- u i x) 0" - { fix x assume x: "x \ space M" have "(?pu x) ----> max (u' x) 0" "(?nu x) ----> max (- u' x) 0" @@ -1438,10 +1434,8 @@ "(SUP n. INF m. Real (- u (n + m) x)) = Real (- u' x)" by (simp_all add: Real_max'[symmetric]) } note eq = this - have *: "\x. real (Real (u' x)) - real (Real (- u' x)) = u' x" by auto - have "(SUP n. INF m. (\x. Real (u (n + m) x))) \ borel_measurable M" "(SUP n. INF m. (\x. Real (- u (n + m) x))) \ borel_measurable M" using u by (auto intro: borel_measurable_SUP borel_measurable_INF borel_measurable_Real)