# HG changeset patch # User haftmann # Date 1575547773 0 # Node ID 9612115e06d12afa219c1c2f9ec230ab67e6b879 # Parent da73ee7606437e997958e868123b5ba641871427 removed some vain declarations diff -r da73ee760643 -r 9612115e06d1 src/HOL/Complete_Lattices.thy --- a/src/HOL/Complete_Lattices.thy Thu Dec 05 13:51:09 2019 +0100 +++ b/src/HOL/Complete_Lattices.thy Thu Dec 05 12:09:33 2019 +0000 @@ -172,20 +172,20 @@ lemma Inf_insert [simp]: "\(insert a A) = a \ \A" by (auto intro: le_infI le_infI1 le_infI2 antisym Inf_greatest Inf_lower) -lemma INF_insert [simp]: "(\x\insert a A. f x) = f a \ \(f ` A)" - by (simp cong del: INF_cong_simp) +lemma INF_insert: "(\x\insert a A. f x) = f a \ \(f ` A)" + by simp lemma Sup_insert [simp]: "\(insert a A) = a \ \A" by (auto intro: le_supI le_supI1 le_supI2 antisym Sup_least Sup_upper) -lemma SUP_insert [simp]: "(\x\insert a A. f x) = f a \ \(f ` A)" - by (simp cong del: SUP_cong_simp) +lemma SUP_insert: "(\x\insert a A. f x) = f a \ \(f ` A)" + by simp -lemma INF_empty [simp]: "(\x\{}. f x) = \" - by (simp cong del: INF_cong_simp) +lemma INF_empty: "(\x\{}. f x) = \" + by simp -lemma SUP_empty [simp]: "(\x\{}. f x) = \" - by (simp cong del: SUP_cong_simp) +lemma SUP_empty: "(\x\{}. f x) = \" + by simp lemma Inf_UNIV [simp]: "\UNIV = \" by (auto intro!: antisym Inf_lower) diff -r da73ee760643 -r 9612115e06d1 src/HOL/Conditionally_Complete_Lattices.thy --- a/src/HOL/Conditionally_Complete_Lattices.thy Thu Dec 05 13:51:09 2019 +0100 +++ b/src/HOL/Conditionally_Complete_Lattices.thy Thu Dec 05 12:09:33 2019 +0000 @@ -323,10 +323,10 @@ by (metis cSUP_upper le_less_trans) lemma cINF_insert: "A \ {} \ bdd_below (f ` A) \ \(f ` insert a A) = inf (f a) (\(f ` A))" - by (simp add: cInf_insert cong del: INF_cong) + by (simp add: cInf_insert) lemma cSUP_insert: "A \ {} \ bdd_above (f ` A) \ \(f ` insert a A) = sup (f a) (\(f ` A))" - by (simp add: cSup_insert cong del: SUP_cong) + by (simp add: cSup_insert) lemma cINF_mono: "B \ {} \ bdd_below (f ` A) \ (\m. m \ B \ \n\A. f n \ g m) \ \(f ` A) \ \(g ` B)" using cInf_mono [of "g ` B" "f ` A"] by auto @@ -351,13 +351,13 @@ by (intro antisym le_infI cInf_greatest cInf_lower) (auto intro: le_infI1 le_infI2 cInf_lower) lemma cINF_union: "A \ {} \ bdd_below (f ` A) \ B \ {} \ bdd_below (f ` B) \ \ (f ` (A \ B)) = \ (f ` A) \ \ (f ` B)" - using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un cong del: INF_cong) + using cInf_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un) lemma cSup_union_distrib: "A \ {} \ bdd_above A \ B \ {} \ bdd_above B \ Sup (A \ B) = sup (Sup A) (Sup B)" by (intro antisym le_supI cSup_least cSup_upper) (auto intro: le_supI1 le_supI2 cSup_upper) lemma cSUP_union: "A \ {} \ bdd_above (f ` A) \ B \ {} \ bdd_above (f ` B) \ \ (f ` (A \ B)) = \ (f ` A) \ \ (f ` B)" - using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un cong del: SUP_cong) + using cSup_union_distrib [of "f ` A" "f ` B"] by (simp add: image_Un) lemma cINF_inf_distrib: "A \ {} \ bdd_below (f`A) \ bdd_below (g`A) \ \ (f ` A) \ \ (g ` A) = (\a\A. inf (f a) (g a))" by (intro antisym le_infI cINF_greatest cINF_lower2)