# HG changeset patch # User nipkow # Date 1356131090 -3600 # Node ID 965d4c108584ee55cf2dfea43f449ab5e80c8a84 # Parent eefab127e9f16db3c4327f4af5a577694f726a81 added simp rule diff -r eefab127e9f1 -r 965d4c108584 src/HOL/Lattices.thy --- a/src/HOL/Lattices.thy Fri Dec 21 23:52:10 2012 +0100 +++ b/src/HOL/Lattices.thy Sat Dec 22 00:04:50 2012 +0100 @@ -20,9 +20,11 @@ assumes idem [simp]: "f a a = a" begin -lemma left_idem [simp]: - "f a (f a b) = f a b" - by (simp add: assoc [symmetric]) +lemma left_idem [simp]: "f a (f a b) = f a b" +by (simp add: assoc [symmetric]) + +lemma right_idem [simp]: "f (f a b) b = f a b" +by (simp add: assoc) end @@ -184,8 +186,11 @@ lemma inf_idem: "x \ x = x" by (fact inf.idem) (* already simp *) -lemma inf_left_idem [simp]: "x \ (x \ y) = x \ y" - by (fact inf.left_idem) +lemma inf_left_idem: "x \ (x \ y) = x \ y" + by (fact inf.left_idem) (* already simp *) + +lemma inf_right_idem: "(x \ y) \ y = x \ y" + by (fact inf.right_idem) (* already simp *) lemma inf_absorb1: "x \ y \ x \ y = x" by (rule antisym) auto