# HG changeset patch # User wenzelm # Date 1304349131 -7200 # Node ID 9691759a9b3c3ce2ba4868abadd547ae0d35df43 # Parent a38e0f15d76579afad497b9d774c00138a1c7673 removed obsolete rail diagram (which was about old-style theory syntax); diff -r a38e0f15d765 -r 9691759a9b3c doc-src/ZF/Makefile --- a/doc-src/ZF/Makefile Mon May 02 17:07:46 2011 +0200 +++ b/doc-src/ZF/Makefile Mon May 02 17:12:11 2011 +0200 @@ -16,9 +16,6 @@ ../rail.sty ../proof.sty ../iman.sty ../extra.sty ../ttbox.sty \ ../../lib/texinputs/isabelle.sty ../../lib/texinputs/isabellesym.sty ../pdfsetup.sty ../manual.bib -rail: - $(RAIL) $(NAME) - dvi: $(NAME).dvi $(NAME).dvi: $(FILES) isabelle_zf.eps diff -r a38e0f15d765 -r 9691759a9b3c doc-src/ZF/ZF.tex --- a/doc-src/ZF/ZF.tex Mon May 02 17:07:46 2011 +0200 +++ b/doc-src/ZF/ZF.tex Mon May 02 17:12:11 2011 +0200 @@ -1761,27 +1761,11 @@ \subsection{Defining datatypes} -The theory syntax for datatype definitions is shown in -Fig.~\ref{datatype-grammar}. In order to be well-formed, a datatype -definition has to obey the rules stated in the previous section. As a result -the theory is extended with the new types, the constructors, and the theorems -listed in the previous section. The quotation marks are necessary because -they enclose general Isabelle formul\ae. - -\begin{figure} -\begin{rail} -datatype : ( 'datatype' | 'codatatype' ) datadecls; - -datadecls: ( '"' id arglist '"' '=' (constructor + '|') ) + 'and' - ; -constructor : name ( () | consargs ) ( () | ( '(' mixfix ')' ) ) - ; -consargs : '(' ('"' var ' : ' term '"' + ',') ')' - ; -\end{rail} -\caption{Syntax of datatype declarations} -\label{datatype-grammar} -\end{figure} +The theory syntax for datatype definitions is shown in the +Isabelle/Isar reference manual. In order to be well-formed, a +datatype definition has to obey the rules stated in the previous +section. As a result the theory is extended with the new types, the +constructors, and the theorems listed in the previous section. Codatatypes are declared like datatypes and are identical to them in every respect except that they have a coinduction rule instead of an induction rule.