# HG changeset patch # User huffman # Date 1333606420 -7200 # Node ID eabfb53cfca809e43ea21fc32c07d80b2befa51c # Parent f483be2fecb9464db3b32642a25e1aba17148444# Parent 97097a58335d0d45afa9c0bb5dc780a84bb92131 merged diff -r 97097a58335d -r eabfb53cfca8 src/HOL/Lifting.thy --- a/src/HOL/Lifting.thy Thu Apr 05 00:37:22 2012 +0100 +++ b/src/HOL/Lifting.thy Thu Apr 05 08:13:40 2012 +0200 @@ -297,6 +297,54 @@ show "transp (invariant P)" by (auto intro: transpI simp: invariant_def) qed +text {* Generating transfer rules for a type defined with @{text "typedef"}. *} + +lemma typedef_bi_unique: + assumes type: "type_definition Rep Abs A" + assumes T_def: "T \ (\x y. x = Rep y)" + shows "bi_unique T" + unfolding bi_unique_def T_def + by (simp add: type_definition.Rep_inject [OF type]) + +lemma typedef_right_total: + assumes T_def: "T \ (\x y. x = Rep y)" + shows "right_total T" + unfolding right_total_def T_def by simp + +lemma copy_type_bi_total: + assumes type: "type_definition Rep Abs UNIV" + assumes T_def: "T \ (\x y. x = Rep y)" + shows "bi_total T" + unfolding bi_total_def T_def + by (metis type_definition.Abs_inverse [OF type] UNIV_I) + +lemma typedef_transfer_All: + assumes type: "type_definition Rep Abs A" + assumes T_def: "T \ (\x y. x = Rep y)" + shows "((T ===> op =) ===> op =) (Ball A) All" + unfolding T_def fun_rel_def + by (metis type_definition.Rep [OF type] + type_definition.Abs_inverse [OF type]) + +lemma typedef_transfer_Ex: + assumes type: "type_definition Rep Abs A" + assumes T_def: "T \ (\x y. x = Rep y)" + shows "((T ===> op =) ===> op =) (Bex A) Ex" + unfolding T_def fun_rel_def + by (metis type_definition.Rep [OF type] + type_definition.Abs_inverse [OF type]) + +lemma typedef_transfer_bforall: + assumes type: "type_definition Rep Abs A" + assumes T_def: "T \ (\x y. x = Rep y)" + shows "((T ===> op =) ===> op =) + (transfer_bforall (\x. x \ A)) transfer_forall" + unfolding transfer_bforall_def transfer_forall_def Ball_def [symmetric] + by (rule typedef_transfer_All [OF assms]) + +text {* Generating the correspondence rule for a constant defined with + @{text "lift_definition"}. *} + lemma Quotient_to_transfer: assumes "Quotient R Abs Rep T" and "R c c" and "c' \ Abs c" shows "T c c'"