# HG changeset patch # User berghofe # Date 1170866763 -3600 # Node ID 9785397cc344de3b6f9b2d643398c423287777df # Parent aac2ac7c32fdffbd514f45d0f5e1592acc868e5f Adapted to changes in Finite_Set theory. diff -r aac2ac7c32fd -r 9785397cc344 src/HOL/Isar_examples/MutilatedCheckerboard.thy --- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Feb 07 17:45:03 2007 +0100 +++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Wed Feb 07 17:46:03 2007 +0100 @@ -186,8 +186,8 @@ using d proof induct fix i j :: nat - show "finite {(i, j), (i, j + 1)}" by (intro Finites.intros) - show "finite {(i, j), (i + 1, j)}" by (intro Finites.intros) + show "finite {(i, j), (i, j + 1)}" by (intro finite.intros) + show "finite {(i, j), (i + 1, j)}" by (intro finite.intros) qed @@ -198,7 +198,7 @@ shows "finite t" (is "?F t") using t proof induct - show "?F {}" by (rule Finites.emptyI) + show "?F {}" by (rule finite.emptyI) fix a t assume "?F t" assume "a : domino" then have "?F a" by (rule domino_finite) then show "?F (a Un t)" by (rule finite_UnI)