# HG changeset patch # User kleing # Date 1140385218 -3600 # Node ID 9804aa8d5756c1354cd0f0e79d0277bdb369deb3 # Parent 6f8c1343341bd96288c4e87536e48f34a4b65319 fixed document diff -r 6f8c1343341b -r 9804aa8d5756 src/HOL/Complex/ex/ROOT.ML --- a/src/HOL/Complex/ex/ROOT.ML Sun Feb 19 22:12:30 2006 +0100 +++ b/src/HOL/Complex/ex/ROOT.ML Sun Feb 19 22:40:18 2006 +0100 @@ -15,6 +15,9 @@ no_document use_thy "BigO"; use_thy "BigO_Complex"; +no_document use_thy "ASeries"; use_thy "ASeries_Complex"; use_thy "HarmonicSeries"; + +no_document use_thy "NatPair"; use_thy "DenumRat"; diff -r 6f8c1343341b -r 9804aa8d5756 src/HOL/Library/ASeries.thy --- a/src/HOL/Library/ASeries.thy Sun Feb 19 22:12:30 2006 +0100 +++ b/src/HOL/Library/ASeries.thy Sun Feb 19 22:40:18 2006 +0100 @@ -24,14 +24,14 @@ "http://mathworld.wolfram.com/ArithmeticSeries.html") The proof is a simple forward proof. Let $S$ equal the sum above and $a$ the first element, then we have -\begin{align} -\nonumber S &= a + (a+d) + (a+2d) + ... a_n \\ -\nonumber &= n*a + d (0 + 1 + 2 + ... n-1) \\ -\nonumber &= n*a + d (\frac{1}{2} * (n-1) * n) \mbox{..using a simple sum identity} \\ -\nonumber &= \frac{n}{2} (2a + d(n-1)) \\ -\nonumber & \mbox{..but $(a+a_n = a + (a + d(n-1)) = 2a + d(n-1))$ so} \\ -\nonumber S &= \frac{n}{2} (a + a_n) -\end{align} +\begin{tabular}{ll} + $S$ &$= a + (a+d) + (a+2d) + ... a_n$ \\ + &$= n*a + d (0 + 1 + 2 + ... n-1)$ \\ + &$= n*a + d (\frac{1}{2} * (n-1) * n)$ ..using a simple sum identity \\ + &$= \frac{n}{2} (2a + d(n-1))$ \\ + & ..but $(a+a_n = a + (a + d(n-1)) = 2a + d(n-1))$ so \\ + $S$ &$= \frac{n}{2} (a + a_n)$ +\end{tabular} *} section {* Formal Proof *}