# HG changeset patch # User ballarin # Date 1224170387 -7200 # Node ID 983c1855a7aff2aa487a80fa119726041fd28755 # Parent 2ededdda7294985c1cc50bc385782034c1c7e07f More occurrences of 'includes' gone. diff -r 2ededdda7294 -r 983c1855a7af src/FOL/ex/LocaleTest.thy --- a/src/FOL/ex/LocaleTest.thy Thu Oct 16 17:07:20 2008 +0200 +++ b/src/FOL/ex/LocaleTest.thy Thu Oct 16 17:19:47 2008 +0200 @@ -682,13 +682,6 @@ "(x ++ y) ++ z = x ++ (y ++ z)" by (simp add: r_def assoc) -lemma (in Rpair_semi) - includes Rsemi_rev prodP (infixl "***" 65) rprodP (infixl "+++" 65) - constrains prod :: "['a, 'a] => 'a" - and rprodP :: "[('a, 'a) pair, ('a, 'a) pair] => ('a, 'a) pair" - shows "(x +++ y) +++ z = x +++ (y +++ z)" - apply (rule r_assoc) done - subsection {* Import of Locales with Predicates as Interpretation *} diff -r 2ededdda7294 -r 983c1855a7af src/HOL/Statespace/StateSpaceEx.thy --- a/src/HOL/Statespace/StateSpaceEx.thy Thu Oct 16 17:07:20 2008 +0200 +++ b/src/HOL/Statespace/StateSpaceEx.thy Thu Oct 16 17:19:47 2008 +0200 @@ -201,10 +201,12 @@ implemented correctly in future Isabelle versions. *} lemma - includes foo - shows True + assumes "foo f a b c p1 i1 p2 i2 p3 i3 p4 i4" + shows True +proof + interpret foo [f a b c p1 i1 p2 i2 p3 i3 p4 i4] by fact term "s\a = i" - by simp +qed (* lemma diff -r 2ededdda7294 -r 983c1855a7af src/HOLCF/Algebraic.thy --- a/src/HOLCF/Algebraic.thy Thu Oct 16 17:07:20 2008 +0200 +++ b/src/HOLCF/Algebraic.thy Thu Oct 16 17:19:47 2008 +0200 @@ -157,10 +157,11 @@ end lemma pre_deflation_d_f: - includes finite_deflation d + assumes "finite_deflation d" assumes f: "\x. f\x \ x" shows "pre_deflation (d oo f)" proof + interpret d: finite_deflation [d] by fact fix x show "\x. (d oo f)\x \ x" by (simp, rule trans_less [OF d.less f]) @@ -169,10 +170,11 @@ qed lemma eventual_iterate_oo_fixed_iff: - includes finite_deflation d + assumes "finite_deflation d" assumes f: "\x. f\x \ x" shows "eventual (\n. iterate n\(d oo f))\x = x \ d\x = x \ f\x = x" proof - + interpret d: finite_deflation [d] by fact let ?e = "d oo f" interpret e: pre_deflation ["d oo f"] using `finite_deflation d` f @@ -480,10 +482,11 @@ is an algebraic deflation. *} lemma - includes ep_pair e p + assumes "ep_pair e p" constrains e :: "'a::profinite \ 'b::profinite" shows "\d. cast\d = e oo p" proof + interpret ep_pair [e p] by fact let ?a = "\i. e oo approx i oo p" have a: "\i. finite_deflation (?a i)" apply (rule finite_deflation_e_d_p) @@ -507,13 +510,14 @@ an algebraic deflation, then the cpo is bifinite. *} lemma - includes ep_pair e p + assumes "ep_pair e p" constrains e :: "'a::cpo \ 'b::profinite" assumes d: "\x. cast\d\x = e\(p\x)" obtains a :: "nat \ 'a \ 'a" where "\i. finite_deflation (a i)" "(\i. a i) = ID" proof + interpret ep_pair [e p] by fact let ?a = "\i. p oo cast\(approx i\d) oo e" show "\i. finite_deflation (?a i)" apply (rule finite_deflation_p_d_e) diff -r 2ededdda7294 -r 983c1855a7af src/HOLCF/CompactBasis.thy --- a/src/HOLCF/CompactBasis.thy Thu Oct 16 17:07:20 2008 +0200 +++ b/src/HOLCF/CompactBasis.thy Thu Oct 16 17:19:47 2008 +0200 @@ -237,14 +237,17 @@ where "fold_pd g f t = fold1 f (g ` Rep_pd_basis t)" lemma fold_pd_PDUnit: - includes ab_semigroup_idem_mult f + assumes "ab_semigroup_idem_mult f" shows "fold_pd g f (PDUnit x) = g x" unfolding fold_pd_def Rep_PDUnit by simp lemma fold_pd_PDPlus: - includes ab_semigroup_idem_mult f + assumes "ab_semigroup_idem_mult f" shows "fold_pd g f (PDPlus t u) = f (fold_pd g f t) (fold_pd g f u)" -unfolding fold_pd_def Rep_PDPlus by (simp add: image_Un fold1_Un2) +proof - + interpret ab_semigroup_idem_mult [f] by fact + show ?thesis unfolding fold_pd_def Rep_PDPlus by (simp add: image_Un fold1_Un2) +qed text {* Take function for powerdomain basis *} diff -r 2ededdda7294 -r 983c1855a7af src/HOLCF/Deflation.thy --- a/src/HOLCF/Deflation.thy Thu Oct 16 17:07:20 2008 +0200 +++ b/src/HOLCF/Deflation.thy Thu Oct 16 17:19:47 2008 +0200 @@ -78,12 +78,14 @@ *} lemma deflation_less_comp1: - includes deflation f - includes deflation g + assumes "deflation f" + assumes "deflation g" shows "f \ g \ f\(g\x) = f\x" proof (rule antisym_less) + interpret g: deflation [g] by fact from g.less show "f\(g\x) \ f\x" by (rule monofun_cfun_arg) next + interpret f: deflation [f] by fact assume "f \ g" hence "f\x \ g\x" by (rule monofun_cfun_fun) hence "f\(f\x) \ f\(g\x)" by (rule monofun_cfun_arg) also have "f\(f\x) = f\x" by (rule f.idem) @@ -215,9 +217,10 @@ by (simp add: deflation.intro e_p_less) lemma deflation_e_d_p: - includes deflation d + assumes "deflation d" shows "deflation (e oo d oo p)" proof + interpret deflation [d] by fact fix x :: 'b show "(e oo d oo p)\((e oo d oo p)\x) = (e oo d oo p)\x" by (simp add: idem) @@ -226,9 +229,10 @@ qed lemma finite_deflation_e_d_p: - includes finite_deflation d + assumes "finite_deflation d" shows "finite_deflation (e oo d oo p)" proof + interpret finite_deflation [d] by fact fix x :: 'b show "(e oo d oo p)\((e oo d oo p)\x) = (e oo d oo p)\x" by (simp add: idem) @@ -243,39 +247,47 @@ qed lemma deflation_p_d_e: - includes deflation d + assumes "deflation d" assumes d: "\x. d\x \ e\(p\x)" shows "deflation (p oo d oo e)" - apply (default, simp_all) - apply (rule antisym_less) - apply (rule monofun_cfun_arg) - apply (rule trans_less [OF d]) - apply (simp add: e_p_less) - apply (rule monofun_cfun_arg) - apply (rule rev_trans_less) - apply (rule monofun_cfun_arg) - apply (rule d) - apply (simp add: d.idem) - apply (rule sq_ord_less_eq_trans) - apply (rule monofun_cfun_arg) - apply (rule d.less) - apply (rule e_inverse) -done +proof - + interpret d: deflation [d] by fact + show ?thesis + apply (default, simp_all) + apply (rule antisym_less) + apply (rule monofun_cfun_arg) + apply (rule trans_less [OF d]) + apply (simp add: e_p_less) + apply (rule monofun_cfun_arg) + apply (rule rev_trans_less) + apply (rule monofun_cfun_arg) + apply (rule d) + apply (simp add: d.idem) + apply (rule sq_ord_less_eq_trans) + apply (rule monofun_cfun_arg) + apply (rule d.less) + apply (rule e_inverse) + done +qed lemma finite_deflation_p_d_e: - includes finite_deflation d + assumes "finite_deflation d" assumes d: "\x. d\x \ e\(p\x)" shows "finite_deflation (p oo d oo e)" - apply (rule finite_deflation.intro) - apply (rule deflation_p_d_e) - apply (rule `deflation d`) - apply (rule d) - apply (rule finite_deflation_axioms.intro) - apply (rule finite_range_imp_finite_fixes) - apply (simp add: range_composition [where f="\x. p\x"]) - apply (simp add: range_composition [where f="\x. d\x"]) - apply (simp add: d.finite_image) -done +proof - + interpret d: finite_deflation [d] by fact + show ?thesis + apply (rule finite_deflation.intro) + apply (rule deflation_p_d_e) + apply (rule `finite_deflation d` [THEN finite_deflation.axioms(1)]) + apply (rule d) + apply (rule finite_deflation_axioms.intro) + apply (rule finite_range_imp_finite_fixes) + apply (simp add: range_composition [where f="\x. p\x"]) + apply (simp add: range_composition [where f="\x. d\x"]) + apply (simp add: d.finite_image) + done +qed end