# HG changeset patch # User hoelzl # Date 1353073583 -3600 # Node ID 98abff4a775b3aafa4c74687df179d9523d133d0 # Parent 32973da2d4f73a2b149c2b85bb505dfe5c122bc4 rules for AE and prob diff -r 32973da2d4f7 -r 98abff4a775b src/HOL/Probability/Probability_Measure.thy --- a/src/HOL/Probability/Probability_Measure.thy Fri Nov 16 14:46:23 2012 +0100 +++ b/src/HOL/Probability/Probability_Measure.thy Fri Nov 16 14:46:23 2012 +0100 @@ -219,6 +219,17 @@ with AE_in_set_eq_1 assms show ?thesis by simp qed +lemma (in prob_space) AE_const[simp]: "(AE x in M. P) \ P" + by (cases P) (auto simp: AE_False) + +lemma (in prob_space) AE_contr: + assumes ae: "AE \ in M. P \" "AE \ in M. \ P \" + shows False +proof - + from ae have "AE \ in M. False" by eventually_elim auto + then show False by auto +qed + lemma (in finite_measure) prob_space_increasing: "increasing M (measure M)" by (auto intro!: finite_measure_mono simp: increasing_def) @@ -438,6 +449,23 @@ then show ?thesis by simp qed (simp add: measure_notin_sets) +lemma (in prob_space) prob_Collect_eq_0: + "{x \ space M. P x} \ sets M \ \

(x in M. P x) = 0 \ (AE x in M. \ P x)" + using AE_iff_measurable[OF _ refl, of M "\x. \ P x"] by (simp add: emeasure_eq_measure) + +lemma (in prob_space) prob_Collect_eq_1: + "{x \ space M. P x} \ sets M \ \

(x in M. P x) = 1 \ (AE x in M. P x)" + using AE_in_set_eq_1[of "{x\space M. P x}"] by simp + +lemma (in prob_space) prob_eq_0: + "A \ sets M \ prob A = 0 \ (AE x in M. x \ A)" + using AE_iff_measurable[OF _ refl, of M "\x. x \ A"] + by (auto simp add: emeasure_eq_measure Int_def[symmetric]) + +lemma (in prob_space) prob_eq_1: + "A \ sets M \ prob A = 1 \ (AE x in M. x \ A)" + using AE_in_set_eq_1[of A] by simp + lemma (in prob_space) prob_sums: assumes P: "\n. {x\space M. P n x} \ events" assumes Q: "{x\space M. Q x} \ events"