# HG changeset patch # User wenzelm # Date 1315410177 -7200 # Node ID 9900c0069ae692953801e5e07e847cac11ab535f # Parent e0da66339e472045450d41508bba1b57b04221c9# Parent 210b127e0b03cd3ed80a0e551e2582c226bae16e merged diff -r e0da66339e47 -r 9900c0069ae6 src/HOL/Decision_Procs/Commutative_Ring_Complete.thy --- a/src/HOL/Decision_Procs/Commutative_Ring_Complete.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Decision_Procs/Commutative_Ring_Complete.thy Wed Sep 07 17:42:57 2011 +0200 @@ -12,8 +12,7 @@ begin text {* Formalization of normal form *} -fun - isnorm :: "('a::{comm_ring}) pol \ bool" +fun isnorm :: "'a::comm_ring pol \ bool" where "isnorm (Pc c) \ True" | "isnorm (Pinj i (Pc c)) \ False" @@ -26,35 +25,40 @@ | "isnorm (PX P i Q) \ isnorm P \ isnorm Q" (* Some helpful lemmas *) -lemma norm_Pinj_0_False:"isnorm (Pinj 0 P) = False" -by(cases P, auto) +lemma norm_Pinj_0_False: "isnorm (Pinj 0 P) = False" + by (cases P) auto -lemma norm_PX_0_False:"isnorm (PX (Pc 0) i Q) = False" -by(cases i, auto) +lemma norm_PX_0_False: "isnorm (PX (Pc 0) i Q) = False" + by (cases i) auto -lemma norm_Pinj:"isnorm (Pinj i Q) \ isnorm Q" -by(cases i,simp add: norm_Pinj_0_False norm_PX_0_False,cases Q) auto +lemma norm_Pinj: "isnorm (Pinj i Q) \ isnorm Q" + by (cases i) (simp add: norm_Pinj_0_False norm_PX_0_False, cases Q, auto) -lemma norm_PX2:"isnorm (PX P i Q) \ isnorm Q" -by(cases i, auto, cases P, auto, case_tac pol2, auto) +lemma norm_PX2: "isnorm (PX P i Q) \ isnorm Q" + by (cases i) (auto, cases P, auto, case_tac pol2, auto) + +lemma norm_PX1: "isnorm (PX P i Q) \ isnorm P" + by (cases i) (auto, cases P, auto, case_tac pol2, auto) -lemma norm_PX1:"isnorm (PX P i Q) \ isnorm P" -by(cases i, auto, cases P, auto, case_tac pol2, auto) - -lemma mkPinj_cn:"\y~=0; isnorm Q\ \ isnorm (mkPinj y Q)" -apply(auto simp add: mkPinj_def norm_Pinj_0_False split: pol.split) -apply(case_tac nat, auto simp add: norm_Pinj_0_False) -by(case_tac pol, auto) (case_tac y, auto) +lemma mkPinj_cn: "y ~= 0 \ isnorm Q \ isnorm (mkPinj y Q)" + apply (auto simp add: mkPinj_def norm_Pinj_0_False split: pol.split) + apply (case_tac nat, auto simp add: norm_Pinj_0_False) + apply (case_tac pol, auto) + apply (case_tac y, auto) + done lemma norm_PXtrans: - assumes A:"isnorm (PX P x Q)" and "isnorm Q2" + assumes A: "isnorm (PX P x Q)" and "isnorm Q2" shows "isnorm (PX P x Q2)" -proof(cases P) - case (PX p1 y p2) with assms show ?thesis by(cases x, auto, cases p2, auto) +proof (cases P) + case (PX p1 y p2) + with assms show ?thesis by (cases x) (auto, cases p2, auto) next - case Pc with assms show ?thesis by (cases x) auto + case Pc + with assms show ?thesis by (cases x) auto next - case Pinj with assms show ?thesis by (cases x) auto + case Pinj + with assms show ?thesis by (cases x) auto qed lemma norm_PXtrans2: @@ -62,7 +66,7 @@ shows "isnorm (PX P (Suc (n+x)) Q2)" proof (cases P) case (PX p1 y p2) - with assms show ?thesis by (cases x, auto, cases p2, auto) + with assms show ?thesis by (cases x) (auto, cases p2, auto) next case Pc with assms show ?thesis by (cases x) auto @@ -83,27 +87,33 @@ with assms show ?thesis by (cases x) (auto simp add: mkPinj_cn mkPX_def) next case (PX P1 y P2) - with assms have Y0: "y>0" by (cases y) auto + with assms have Y0: "y > 0" by (cases y) auto from assms PX have "isnorm P1" "isnorm P2" by (auto simp add: norm_PX1[of P1 y P2] norm_PX2[of P1 y P2]) from assms PX Y0 show ?thesis - by (cases x, auto simp add: mkPX_def norm_PXtrans2[of P1 y _ Q _], cases P2, auto) + by (cases x) (auto simp add: mkPX_def norm_PXtrans2[of P1 y _ Q _], cases P2, auto) qed text {* add conserves normalizedness *} -lemma add_cn:"isnorm P \ isnorm Q \ isnorm (P \ Q)" -proof(induct P Q rule: add.induct) - case (2 c i P2) thus ?case by (cases P2, simp_all, cases i, simp_all) +lemma add_cn: "isnorm P \ isnorm Q \ isnorm (P \ Q)" +proof (induct P Q rule: add.induct) + case (2 c i P2) + thus ?case by (cases P2) (simp_all, cases i, simp_all) next - case (3 i P2 c) thus ?case by (cases P2, simp_all, cases i, simp_all) + case (3 i P2 c) + thus ?case by (cases P2) (simp_all, cases i, simp_all) next case (4 c P2 i Q2) - then have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) - with 4 show ?case by(cases i, simp, cases P2, auto, case_tac pol2, auto) + then have "isnorm P2" "isnorm Q2" + by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) + with 4 show ?case + by (cases i) (simp, cases P2, auto, case_tac pol2, auto) next case (5 P2 i Q2 c) - then have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) - with 5 show ?case by(cases i, simp, cases P2, auto, case_tac pol2, auto) + then have "isnorm P2" "isnorm Q2" + by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) + with 5 show ?case + by (cases i) (simp, cases P2, auto, case_tac pol2, auto) next case (6 x P2 y Q2) then have Y0: "y>0" by (cases y) (auto simp add: norm_Pinj_0_False) @@ -115,14 +125,17 @@ moreover note 6 X0 moreover - from 6 have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) + from 6 have "isnorm P2" "isnorm Q2" + by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) moreover - from 6 `x < y` y have "isnorm (Pinj d Q2)" by (cases d, simp, cases Q2, auto) + from 6 `x < y` y have "isnorm (Pinj d Q2)" + by (cases d, simp, cases Q2, auto) ultimately have ?case by (simp add: mkPinj_cn) } moreover { assume "x=y" moreover - from 6 have "isnorm P2" "isnorm Q2" by(auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) + from 6 have "isnorm P2" "isnorm Q2" + by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) moreover note 6 Y0 moreover @@ -133,30 +146,35 @@ moreover note 6 Y0 moreover - from 6 have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) + from 6 have "isnorm P2" "isnorm Q2" + by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) moreover - from 6 `x > y` x have "isnorm (Pinj d P2)" by (cases d, simp, cases P2, auto) - ultimately have ?case by (simp add: mkPinj_cn)} + from 6 `x > y` x have "isnorm (Pinj d P2)" + by (cases d) (simp, cases P2, auto) + ultimately have ?case by (simp add: mkPinj_cn) } ultimately show ?case by blast next case (7 x P2 Q2 y R) - have "x=0 \ (x = 1) \ (x > 1)" by arith + have "x = 0 \ x = 1 \ x > 1" by arith moreover { assume "x = 0" with 7 have ?case by (auto simp add: norm_Pinj_0_False) } moreover { assume "x = 1" - from 7 have "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R]) + from 7 have "isnorm R" "isnorm P2" + by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R]) with 7 `x = 1` have "isnorm (R \ P2)" by simp - with 7 `x = 1` have ?case by (simp add: norm_PXtrans[of Q2 y _]) } + with 7 `x = 1` have ?case + by (simp add: norm_PXtrans[of Q2 y _]) } moreover { assume "x > 1" hence "EX d. x=Suc (Suc d)" by arith - then obtain d where X:"x=Suc (Suc d)" .. + then obtain d where X: "x=Suc (Suc d)" .. with 7 have NR: "isnorm R" "isnorm P2" by (auto simp add: norm_Pinj[of _ P2] norm_PX2[of Q2 y R]) with 7 X have "isnorm (Pinj (x - 1) P2)" by (cases P2) auto with 7 X NR have "isnorm (R \ Pinj (x - 1) P2)" by simp - with `isnorm (PX Q2 y R)` X have ?case by (simp add: norm_PXtrans[of Q2 y _]) } + with `isnorm (PX Q2 y R)` X have ?case + by (simp add: norm_PXtrans[of Q2 y _]) } ultimately show ?case by blast next case (8 Q2 y R x P2) @@ -183,7 +201,7 @@ with 9 have X0: "x>0" by (cases x) auto with 9 have NP1: "isnorm P1" and NP2: "isnorm P2" by (auto simp add: norm_PX1[of P1 _ P2] norm_PX2[of P1 _ P2]) - with 9 have NQ1:"isnorm Q1" and NQ2: "isnorm Q2" + with 9 have NQ1: "isnorm Q1" and NQ2: "isnorm Q2" by (auto simp add: norm_PX1[of Q1 _ Q2] norm_PX2[of Q1 _ Q2]) have "y < x \ x = y \ x < y" by arith moreover @@ -194,7 +212,7 @@ have "isnorm (PX P1 d (Pc 0))" proof (cases P1) case (PX p1 y p2) - with 9 sm1 sm2 show ?thesis by - (cases d, simp, cases p2, auto) + with 9 sm1 sm2 show ?thesis by (cases d) (simp, cases p2, auto) next case Pc with 9 sm1 sm2 show ?thesis by (cases d) auto next @@ -214,35 +232,37 @@ have "isnorm (PX Q1 d (Pc 0))" proof (cases Q1) case (PX p1 y p2) - with 9 sm1 sm2 show ?thesis by - (cases d, simp, cases p2, auto) + with 9 sm1 sm2 show ?thesis by (cases d) (simp, cases p2, auto) next case Pc with 9 sm1 sm2 show ?thesis by (cases d) auto next case Pinj with 9 sm1 sm2 show ?thesis by (cases d) auto qed ultimately have "isnorm (P2 \ Q2)" "isnorm (PX Q1 (y - x) (Pc 0) \ P1)" by auto - with X0 sm1 sm2 have ?case by (simp add: mkPX_cn)} + with X0 sm1 sm2 have ?case by (simp add: mkPX_cn) } ultimately show ?case by blast qed simp text {* mul concerves normalizedness *} -lemma mul_cn :"isnorm P \ isnorm Q \ isnorm (P \ Q)" -proof(induct P Q rule: mul.induct) +lemma mul_cn: "isnorm P \ isnorm Q \ isnorm (P \ Q)" +proof (induct P Q rule: mul.induct) case (2 c i P2) thus ?case - by (cases P2, simp_all) (cases "i",simp_all add: mkPinj_cn) + by (cases P2) (simp_all, cases i, simp_all add: mkPinj_cn) next case (3 i P2 c) thus ?case - by (cases P2, simp_all) (cases "i",simp_all add: mkPinj_cn) + by (cases P2) (simp_all, cases i, simp_all add: mkPinj_cn) next case (4 c P2 i Q2) - then have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) + then have "isnorm P2" "isnorm Q2" + by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) with 4 show ?case - by - (cases "c = 0", simp_all, cases "i = 0", simp_all add: mkPX_cn) + by (cases "c = 0") (simp_all, cases "i = 0", simp_all add: mkPX_cn) next case (5 P2 i Q2 c) - then have "isnorm P2" "isnorm Q2" by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) + then have "isnorm P2" "isnorm Q2" + by (auto simp only: norm_PX1[of P2 i Q2] norm_PX2[of P2 i Q2]) with 5 show ?case - by - (cases "c = 0", simp_all, cases "i = 0", simp_all add: mkPX_cn) + by (cases "c = 0") (simp_all, cases "i = 0", simp_all add: mkPX_cn) next case (6 x P2 y Q2) have "x < y \ x = y \ x > y" by arith @@ -256,7 +276,7 @@ moreover from 6 have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) moreover - from 6 `x < y` y have "isnorm (Pinj d Q2)" by - (cases d, simp, cases Q2, auto) + from 6 `x < y` y have "isnorm (Pinj d Q2)" by (cases d) (simp, cases Q2, auto) ultimately have ?case by (simp add: mkPinj_cn) } moreover { assume "x = y" @@ -278,7 +298,7 @@ moreover from 6 have "isnorm P2" "isnorm Q2" by (auto simp add: norm_Pinj[of _ P2] norm_Pinj[of _ Q2]) moreover - from 6 `x > y` x have "isnorm (Pinj d P2)" by - (cases d, simp, cases P2, auto) + from 6 `x > y` x have "isnorm (Pinj d P2)" by (cases d) (simp, cases P2, auto) ultimately have ?case by (simp add: mkPinj_cn) } ultimately show ?case by blast next @@ -356,7 +376,7 @@ proof (induct P) case (Pinj i P2) then have "isnorm P2" by (simp add: norm_Pinj[of i P2]) - with Pinj show ?case by - (cases P2, auto, cases i, auto) + with Pinj show ?case by (cases P2) (auto, cases i, auto) next case (PX P1 x P2) note PX1 = this from PX have "isnorm P2" "isnorm P1" @@ -364,7 +384,7 @@ with PX show ?case proof (cases P1) case (PX p1 y p2) - with PX1 show ?thesis by - (cases x, auto, cases p2, auto) + with PX1 show ?thesis by (cases x) (auto, cases p2, auto) next case Pinj with PX1 show ?thesis by (cases x) auto @@ -372,15 +392,18 @@ qed simp text {* sub conserves normalizedness *} -lemma sub_cn:"isnorm p \ isnorm q \ isnorm (p \ q)" -by (simp add: sub_def add_cn neg_cn) +lemma sub_cn: "isnorm p \ isnorm q \ isnorm (p \ q)" + by (simp add: sub_def add_cn neg_cn) text {* sqr conserves normalizizedness *} -lemma sqr_cn:"isnorm P \ isnorm (sqr P)" +lemma sqr_cn: "isnorm P \ isnorm (sqr P)" proof (induct P) + case Pc + then show ?case by simp +next case (Pinj i Q) then show ?case - by - (cases Q, auto simp add: mkPX_cn mkPinj_cn, cases i, auto simp add: mkPX_cn mkPinj_cn) + by (cases Q) (auto simp add: mkPX_cn mkPinj_cn, cases i, auto simp add: mkPX_cn mkPinj_cn) next case (PX P1 x P2) then have "x + x ~= 0" "isnorm P2" "isnorm P1" @@ -389,20 +412,23 @@ and "isnorm (mkPX (sqr P1) (x + x) (sqr P2))" by (auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn) then show ?case by (auto simp add: add_cn mkPX_cn mkPinj_cn mul_cn) -qed simp +qed text {* pow conserves normalizedness *} -lemma pow_cn:"isnorm P \ isnorm (pow n P)" -proof (induct n arbitrary: P rule: nat_less_induct) - case (1 k) +lemma pow_cn: "isnorm P \ isnorm (pow n P)" +proof (induct n arbitrary: P rule: less_induct) + case (less k) show ?case proof (cases "k = 0") + case True + then show ?thesis by simp + next case False then have K2: "k div 2 < k" by (cases k) auto - from 1 have "isnorm (sqr P)" by (simp add: sqr_cn) - with 1 False K2 show ?thesis - by - (simp add: allE[of _ "(k div 2)" _] allE[of _ "(sqr P)" _], cases k, auto simp add: mul_cn) - qed simp + from less have "isnorm (sqr P)" by (simp add: sqr_cn) + with less False K2 show ?thesis + by (simp add: allE[of _ "(k div 2)" _] allE[of _ "(sqr P)" _], cases k, auto simp add: mul_cn) + qed qed end diff -r e0da66339e47 -r 9900c0069ae6 src/HOL/Decision_Procs/Ferrack.thy --- a/src/HOL/Decision_Procs/Ferrack.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Decision_Procs/Ferrack.thy Wed Sep 07 17:42:57 2011 +0200 @@ -676,13 +676,13 @@ {assume nz: "n = 0" hence ?thesis by (simp add: Let_def simp_num_pair_def)} moreover { assume nnz: "n \ 0" - {assume "\ ?g > 1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci) } + {assume "\ ?g > 1" hence ?thesis by (simp add: Let_def simp_num_pair_def) } moreover {assume g1:"?g>1" hence g0: "?g > 0" by simp from g1 nnz have gp0: "?g' \ 0" by simp hence g'p: "?g' > 0" using gcd_ge_0_int[where x="n" and y="numgcd ?t'"] by arith hence "?g'= 1 \ ?g' > 1" by arith - moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simp_num_pair_def simpnum_ci)} + moreover {assume "?g'=1" hence ?thesis by (simp add: Let_def simp_num_pair_def)} moreover {assume g'1:"?g'>1" from dvdnumcoeff_aux2[OF g1] have th1:"dvdnumcoeff ?t' ?g" .. let ?tt = "reducecoeffh ?t' ?g'" @@ -800,32 +800,34 @@ proof(induct p rule: simpfm.induct) case (6 a) hence nb: "numbound0 a" by simp hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) - thus ?case by (cases "simpnum a", auto simp add: Let_def) + thus ?case by (cases "simpnum a") (auto simp add: Let_def) next case (7 a) hence nb: "numbound0 a" by simp hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) - thus ?case by (cases "simpnum a", auto simp add: Let_def) + thus ?case by (cases "simpnum a") (auto simp add: Let_def) next case (8 a) hence nb: "numbound0 a" by simp hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) - thus ?case by (cases "simpnum a", auto simp add: Let_def) + thus ?case by (cases "simpnum a") (auto simp add: Let_def) next case (9 a) hence nb: "numbound0 a" by simp hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) - thus ?case by (cases "simpnum a", auto simp add: Let_def) + thus ?case by (cases "simpnum a") (auto simp add: Let_def) next case (10 a) hence nb: "numbound0 a" by simp hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) - thus ?case by (cases "simpnum a", auto simp add: Let_def) + thus ?case by (cases "simpnum a") (auto simp add: Let_def) next case (11 a) hence nb: "numbound0 a" by simp hence "numbound0 (simpnum a)" by (simp only: simpnum_numbound0[OF nb]) - thus ?case by (cases "simpnum a", auto simp add: Let_def) + thus ?case by (cases "simpnum a") (auto simp add: Let_def) qed(auto simp add: disj_def imp_def iff_def conj_def not_bn) lemma simpfm_qf: "qfree p \ qfree (simpfm p)" -by (induct p rule: simpfm.induct, auto simp add: disj_qf imp_qf iff_qf conj_qf not_qf Let_def) - (case_tac "simpnum a",auto)+ + apply (induct p rule: simpfm.induct) + apply (auto simp add: Let_def) + apply (case_tac "simpnum a", auto)+ + done consts prep :: "fm \ fm" recdef prep "measure fmsize" @@ -854,7 +856,7 @@ "prep p = p" (hints simp add: fmsize_pos) lemma prep: "\ bs. Ifm bs (prep p) = Ifm bs p" -by (induct p rule: prep.induct, auto) + by (induct p rule: prep.induct) auto (* Generic quantifier elimination *) function (sequential) qelim :: "fm \ (fm \ fm) \ fm" where @@ -1037,7 +1039,7 @@ assumes qfp: "qfree p" shows "(Ifm bs (rlfm p) = Ifm bs p) \ isrlfm (rlfm p)" using qfp -by (induct p rule: rlfm.induct, auto simp add: lt le gt ge eq neq conj disj conj_lin disj_lin) +by (induct p rule: rlfm.induct) (auto simp add: lt le gt ge eq neq conj disj conj_lin disj_lin) (* Operations needed for Ferrante and Rackoff *) lemma rminusinf_inf: @@ -1045,9 +1047,11 @@ shows "\ z. \ x < z. Ifm (x#bs) (minusinf p) = Ifm (x#bs) p" (is "\ z. \ x. ?P z x p") using lp proof (induct p rule: minusinf.induct) - case (1 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto + case (1 p q) + thus ?case apply auto apply (rule_tac x= "min z za" in exI) apply auto done next - case (2 p q) thus ?case by (auto,rule_tac x= "min z za" in exI) auto + case (2 p q) + thus ?case apply auto apply (rule_tac x= "min z za" in exI) apply auto done next case (3 c e) from 3 have nb: "numbound0 e" by simp diff -r e0da66339e47 -r 9900c0069ae6 src/HOL/HOLCF/Representable.thy --- a/src/HOL/HOLCF/Representable.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/HOLCF/Representable.thy Wed Sep 07 17:42:57 2011 +0200 @@ -5,7 +5,7 @@ header {* Representable domains *} theory Representable -imports Algebraic Map_Functions Countable +imports Algebraic Map_Functions "~~/src/HOL/Library/Countable" begin default_sort cpo diff -r e0da66339e47 -r 9900c0069ae6 src/HOL/Library/Abstract_Rat.thy --- a/src/HOL/Library/Abstract_Rat.thy Wed Sep 07 14:58:40 2011 +0200 +++ b/src/HOL/Library/Abstract_Rat.thy Wed Sep 07 17:42:57 2011 +0200 @@ -10,64 +10,57 @@ type_synonym Num = "int \ int" -abbreviation - Num0_syn :: Num ("0\<^sub>N") -where "0\<^sub>N \ (0, 0)" +abbreviation Num0_syn :: Num ("0\<^sub>N") + where "0\<^sub>N \ (0, 0)" -abbreviation - Numi_syn :: "int \ Num" ("_\<^sub>N") -where "i\<^sub>N \ (i, 1)" +abbreviation Numi_syn :: "int \ Num" ("_\<^sub>N") + where "i\<^sub>N \ (i, 1)" -definition - isnormNum :: "Num \ bool" -where +definition isnormNum :: "Num \ bool" where "isnormNum = (\(a,b). (if a = 0 then b = 0 else b > 0 \ gcd a b = 1))" -definition - normNum :: "Num \ Num" -where - "normNum = (\(a,b). (if a=0 \ b = 0 then (0,0) else - (let g = gcd a b - in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" +definition normNum :: "Num \ Num" where + "normNum = (\(a,b). + (if a=0 \ b = 0 then (0,0) else + (let g = gcd a b + in if b > 0 then (a div g, b div g) else (- (a div g), - (b div g)))))" -declare gcd_dvd1_int[presburger] -declare gcd_dvd2_int[presburger] +declare gcd_dvd1_int[presburger] gcd_dvd2_int[presburger] + lemma normNum_isnormNum [simp]: "isnormNum (normNum x)" proof - - have " \ a b. x = (a,b)" by auto - then obtain a b where x[simp]: "x = (a,b)" by blast - {assume "a=0 \ b = 0" hence ?thesis by (simp add: normNum_def isnormNum_def)} + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a=0 \ b = 0" hence ?thesis by (simp add: x normNum_def isnormNum_def) } moreover - {assume anz: "a \ 0" and bnz: "b \ 0" + { assume anz: "a \ 0" and bnz: "b \ 0" let ?g = "gcd a b" let ?a' = "a div ?g" let ?b' = "b div ?g" let ?g' = "gcd ?a' ?b'" - from anz bnz have "?g \ 0" by simp with gcd_ge_0_int[of a b] + from anz bnz have "?g \ 0" by simp with gcd_ge_0_int[of a b] have gpos: "?g > 0" by arith - have gdvd: "?g dvd a" "?g dvd b" by arith+ - from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)] - anz bnz - have nz':"?a' \ 0" "?b' \ 0" - by - (rule notI, simp)+ - from anz bnz have stupid: "a \ 0 \ b \ 0" by arith + have gdvd: "?g dvd a" "?g dvd b" by arith+ + from zdvd_mult_div_cancel[OF gdvd(1)] zdvd_mult_div_cancel[OF gdvd(2)] anz bnz + have nz': "?a' \ 0" "?b' \ 0" by - (rule notI, simp)+ + from anz bnz have stupid: "a \ 0 \ b \ 0" by arith from div_gcd_coprime_int[OF stupid] have gp1: "?g' = 1" . from bnz have "b < 0 \ b > 0" by arith moreover - {assume b: "b > 0" - from b have "?b' \ 0" - by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) - with nz' have b': "?b' > 0" by arith - from b b' anz bnz nz' gp1 have ?thesis - by (simp add: isnormNum_def normNum_def Let_def split_def fst_conv snd_conv)} - moreover {assume b: "b < 0" - {assume b': "?b' \ 0" + { assume b: "b > 0" + from b have "?b' \ 0" + by (presburger add: pos_imp_zdiv_nonneg_iff[OF gpos]) + with nz' have b': "?b' > 0" by arith + from b b' anz bnz nz' gp1 have ?thesis + by (simp add: x isnormNum_def normNum_def Let_def split_def) } + moreover { + assume b: "b < 0" + { assume b': "?b' \ 0" from gpos have th: "?g \ 0" by arith from mult_nonneg_nonneg[OF th b'] zdvd_mult_div_cancel[OF gdvd(2)] have False using b by arith } - hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) - from anz bnz nz' b b' gp1 have ?thesis - by (simp add: isnormNum_def normNum_def Let_def split_def)} + hence b': "?b' < 0" by (presburger add: linorder_not_le[symmetric]) + from anz bnz nz' b b' gp1 have ?thesis + by (simp add: x isnormNum_def normNum_def Let_def split_def) } ultimately have ?thesis by blast } ultimately show ?thesis by blast @@ -75,63 +68,55 @@ text {* Arithmetic over Num *} -definition - Nadd :: "Num \ Num \ Num" (infixl "+\<^sub>N" 60) -where - "Nadd = (\(a,b) (a',b'). if a = 0 \ b = 0 then normNum(a',b') - else if a'=0 \ b' = 0 then normNum(a,b) +definition Nadd :: "Num \ Num \ Num" (infixl "+\<^sub>N" 60) where + "Nadd = (\(a,b) (a',b'). if a = 0 \ b = 0 then normNum(a',b') + else if a'=0 \ b' = 0 then normNum(a,b) else normNum(a*b' + b*a', b*b'))" -definition - Nmul :: "Num \ Num \ Num" (infixl "*\<^sub>N" 60) -where - "Nmul = (\(a,b) (a',b'). let g = gcd (a*a') (b*b') +definition Nmul :: "Num \ Num \ Num" (infixl "*\<^sub>N" 60) where + "Nmul = (\(a,b) (a',b'). let g = gcd (a*a') (b*b') in (a*a' div g, b*b' div g))" -definition - Nneg :: "Num \ Num" ("~\<^sub>N") -where - "Nneg \ (\(a,b). (-a,b))" +definition Nneg :: "Num \ Num" ("~\<^sub>N") + where "Nneg \ (\(a,b). (-a,b))" -definition - Nsub :: "Num \ Num \ Num" (infixl "-\<^sub>N" 60) -where - "Nsub = (\a b. a +\<^sub>N ~\<^sub>N b)" +definition Nsub :: "Num \ Num \ Num" (infixl "-\<^sub>N" 60) + where "Nsub = (\a b. a +\<^sub>N ~\<^sub>N b)" -definition - Ninv :: "Num \ Num" -where - "Ninv \ \(a,b). if a < 0 then (-b, \a\) else (b,a)" +definition Ninv :: "Num \ Num" + where "Ninv = (\(a,b). if a < 0 then (-b, \a\) else (b,a))" -definition - Ndiv :: "Num \ Num \ Num" (infixl "\
\<^sub>N" 60) -where - "Ndiv \ \a b. a *\<^sub>N Ninv b" +definition Ndiv :: "Num \ Num \ Num" (infixl "\
\<^sub>N" 60) + where "Ndiv = (\a b. a *\<^sub>N Ninv b)" lemma Nneg_normN[simp]: "isnormNum x \ isnormNum (~\<^sub>N x)" - by(simp add: isnormNum_def Nneg_def split_def) + by (simp add: isnormNum_def Nneg_def split_def) + lemma Nadd_normN[simp]: "isnormNum (x +\<^sub>N y)" by (simp add: Nadd_def split_def) + lemma Nsub_normN[simp]: "\ isnormNum y\ \ isnormNum (x -\<^sub>N y)" by (simp add: Nsub_def split_def) -lemma Nmul_normN[simp]: assumes xn:"isnormNum x" and yn: "isnormNum y" + +lemma Nmul_normN[simp]: + assumes xn: "isnormNum x" and yn: "isnormNum y" shows "isnormNum (x *\<^sub>N y)" -proof- - have "\a b. x = (a,b)" and "\ a' b'. y = (a',b')" by auto - then obtain a b a' b' where ab: "x = (a,b)" and ab': "y = (a',b')" by blast - {assume "a = 0" - hence ?thesis using xn ab ab' - by (simp add: isnormNum_def Let_def Nmul_def split_def)} +proof - + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + { assume "a = 0" + hence ?thesis using xn x y + by (simp add: isnormNum_def Let_def Nmul_def split_def) } moreover - {assume "a' = 0" - hence ?thesis using yn ab ab' - by (simp add: isnormNum_def Let_def Nmul_def split_def)} + { assume "a' = 0" + hence ?thesis using yn x y + by (simp add: isnormNum_def Let_def Nmul_def split_def) } moreover - {assume a: "a \0" and a': "a'\0" - hence bp: "b > 0" "b' > 0" using xn yn ab ab' by (simp_all add: isnormNum_def) - from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a*a', b*b')" - using ab ab' a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) - hence ?thesis by simp} + { assume a: "a \0" and a': "a'\0" + hence bp: "b > 0" "b' > 0" using xn yn x y by (simp_all add: isnormNum_def) + from mult_pos_pos[OF bp] have "x *\<^sub>N y = normNum (a * a', b * b')" + using x y a a' bp by (simp add: Nmul_def Let_def split_def normNum_def) + hence ?thesis by simp } ultimately show ?thesis by blast qed @@ -139,89 +124,77 @@ by (simp add: Ninv_def isnormNum_def split_def) (cases "fst x = 0", auto simp add: gcd_commute_int) -lemma isnormNum_int[simp]: +lemma isnormNum_int[simp]: "isnormNum 0\<^sub>N" "isnormNum ((1::int)\<^sub>N)" "i \ 0 \ isnormNum (i\<^sub>N)" by (simp_all add: isnormNum_def) text {* Relations over Num *} -definition - Nlt0:: "Num \ bool" ("0>\<^sub>N") -where - "Nlt0 = (\(a,b). a < 0)" +definition Nlt0:: "Num \ bool" ("0>\<^sub>N") + where "Nlt0 = (\(a,b). a < 0)" -definition - Nle0:: "Num \ bool" ("0\\<^sub>N") -where - "Nle0 = (\(a,b). a \ 0)" +definition Nle0:: "Num \ bool" ("0\\<^sub>N") + where "Nle0 = (\(a,b). a \ 0)" -definition - Ngt0:: "Num \ bool" ("0<\<^sub>N") -where - "Ngt0 = (\(a,b). a > 0)" +definition Ngt0:: "Num \ bool" ("0<\<^sub>N") + where "Ngt0 = (\(a,b). a > 0)" -definition - Nge0:: "Num \ bool" ("0\\<^sub>N") -where - "Nge0 = (\(a,b). a \ 0)" +definition Nge0:: "Num \ bool" ("0\\<^sub>N") + where "Nge0 = (\(a,b). a \ 0)" -definition - Nlt :: "Num \ Num \ bool" (infix "<\<^sub>N" 55) -where - "Nlt = (\a b. 0>\<^sub>N (a -\<^sub>N b))" +definition Nlt :: "Num \ Num \ bool" (infix "<\<^sub>N" 55) + where "Nlt = (\a b. 0>\<^sub>N (a -\<^sub>N b))" -definition - Nle :: "Num \ Num \ bool" (infix "\\<^sub>N" 55) -where - "Nle = (\a b. 0\\<^sub>N (a -\<^sub>N b))" +definition Nle :: "Num \ Num \ bool" (infix "\\<^sub>N" 55) + where "Nle = (\a b. 0\\<^sub>N (a -\<^sub>N b))" -definition - "INum = (\(a,b). of_int a / of_int b)" +definition "INum = (\(a,b). of_int a / of_int b)" lemma INum_int [simp]: "INum (i\<^sub>N) = ((of_int i) ::'a::field)" "INum 0\<^sub>N = (0::'a::field)" by (simp_all add: INum_def) -lemma isnormNum_unique[simp]: - assumes na: "isnormNum x" and nb: "isnormNum y" +lemma isnormNum_unique[simp]: + assumes na: "isnormNum x" and nb: "isnormNum y" shows "((INum x ::'a::{field_char_0, field_inverse_zero}) = INum y) = (x = y)" (is "?lhs = ?rhs") proof - have "\ a b a' b'. x = (a,b) \ y = (a',b')" by auto - then obtain a b a' b' where xy[simp]: "x = (a,b)" "y=(a',b')" by blast - assume H: ?lhs - {assume "a = 0 \ b = 0 \ a' = 0 \ b' = 0" + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + assume H: ?lhs + { assume "a = 0 \ b = 0 \ a' = 0 \ b' = 0" hence ?rhs using na nb H - by (simp add: INum_def split_def isnormNum_def split: split_if_asm)} + by (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) } moreover { assume az: "a \ 0" and bz: "b \ 0" and a'z: "a'\0" and b'z: "b'\0" - from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: isnormNum_def) - from H bz b'z have eq:"a * b' = a'*b" - by (simp add: INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) - from az a'z na nb have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1" - by (simp_all add: isnormNum_def add: gcd_commute_int) - from eq have raw_dvd: "a dvd a'*b" "b dvd b'*a" "a' dvd a*b'" "b' dvd b*a'" - apply - + from az bz a'z b'z na nb have pos: "b > 0" "b' > 0" by (simp_all add: x y isnormNum_def) + from H bz b'z have eq: "a * b' = a'*b" + by (simp add: x y INum_def eq_divide_eq divide_eq_eq of_int_mult[symmetric] del: of_int_mult) + from az a'z na nb have gcd1: "gcd a b = 1" "gcd b a = 1" "gcd a' b' = 1" "gcd b' a' = 1" + by (simp_all add: x y isnormNum_def add: gcd_commute_int) + from eq have raw_dvd: "a dvd a' * b" "b dvd b' * a" "a' dvd a * b'" "b' dvd b * a'" + apply - apply algebra apply algebra apply simp apply algebra done from zdvd_antisym_abs[OF coprime_dvd_mult_int[OF gcd1(2) raw_dvd(2)] - coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]] + coprime_dvd_mult_int[OF gcd1(4) raw_dvd(4)]] have eq1: "b = b'" using pos by arith with eq have "a = a'" using pos by simp - with eq1 have ?rhs by simp} + with eq1 have ?rhs by (simp add: x y) } ultimately show ?rhs by blast next assume ?rhs thus ?lhs by simp qed -lemma isnormNum0[simp]: "isnormNum x \ (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)" +lemma isnormNum0[simp]: + "isnormNum x \ (INum x = (0::'a::{field_char_0, field_inverse_zero})) = (x = 0\<^sub>N)" unfolding INum_int(2)[symmetric] - by (rule isnormNum_unique, simp_all) + by (rule isnormNum_unique) simp_all -lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) = +lemma of_int_div_aux: "d ~= 0 ==> ((of_int x)::'a::field_char_0) / (of_int d) = of_int (x div d) + (of_int (x mod d)) / ((of_int d)::'a)" proof - assume "d ~= 0" @@ -231,7 +204,7 @@ by auto then have eq: "of_int x = ?t" by (simp only: of_int_mult[symmetric] of_int_add [symmetric]) - then have "of_int x / of_int d = ?t / of_int d" + then have "of_int x / of_int d = ?t / of_int d" using cong[OF refl[of ?f] eq] by simp then show ?thesis by (simp add: add_divide_distrib algebra_simps `d ~= 0`) qed @@ -241,25 +214,26 @@ apply (frule of_int_div_aux [of d n, where ?'a = 'a]) apply simp apply (simp add: dvd_eq_mod_eq_0) -done + done lemma normNum[simp]: "INum (normNum x) = (INum x :: 'a::{field_char_0, field_inverse_zero})" -proof- - have "\ a b. x = (a,b)" by auto - then obtain a b where x[simp]: "x = (a,b)" by blast - {assume "a=0 \ b = 0" hence ?thesis - by (simp add: INum_def normNum_def split_def Let_def)} - moreover - {assume a: "a\0" and b: "b\0" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0 \ b = 0" + hence ?thesis by (simp add: x INum_def normNum_def split_def Let_def) } + moreover + { assume a: "a \ 0" and b: "b \ 0" let ?g = "gcd a b" from a b have g: "?g \ 0"by simp from of_int_div[OF g, where ?'a = 'a] - have ?thesis by (auto simp add: INum_def normNum_def split_def Let_def)} + have ?thesis by (auto simp add: x INum_def normNum_def split_def Let_def) } ultimately show ?thesis by blast qed -lemma INum_normNum_iff: "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \ normNum x = normNum y" (is "?lhs = ?rhs") +lemma INum_normNum_iff: + "(INum x ::'a::{field_char_0, field_inverse_zero}) = INum y \ normNum x = normNum y" + (is "?lhs = ?rhs") proof - have "normNum x = normNum y \ (INum (normNum x) :: 'a) = INum (normNum y)" by (simp del: normNum) @@ -268,139 +242,157 @@ qed lemma Nadd[simp]: "INum (x +\<^sub>N y) = INum x + (INum y :: 'a :: {field_char_0, field_inverse_zero})" -proof- -let ?z = "0:: 'a" - have " \ a b. x = (a,b)" " \ a' b'. y = (a',b')" by auto - then obtain a b a' b' where x[simp]: "x = (a,b)" - and y[simp]: "y = (a',b')" by blast - {assume "a=0 \ a'= 0 \ b =0 \ b' = 0" hence ?thesis - apply (cases "a=0",simp_all add: Nadd_def) - apply (cases "b= 0",simp_all add: INum_def) - apply (cases "a'= 0",simp_all) - apply (cases "b'= 0",simp_all) +proof - + let ?z = "0:: 'a" + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + { assume "a=0 \ a'= 0 \ b =0 \ b' = 0" + hence ?thesis + apply (cases "a=0", simp_all add: x y Nadd_def) + apply (cases "b= 0", simp_all add: INum_def) + apply (cases "a'= 0", simp_all) + apply (cases "b'= 0", simp_all) done } - moreover - {assume aa':"a \ 0" "a'\ 0" and bb': "b \ 0" "b' \ 0" - {assume z: "a * b' + b * a' = 0" + moreover + { assume aa': "a \ 0" "a'\ 0" and bb': "b \ 0" "b' \ 0" + { assume z: "a * b' + b * a' = 0" hence "of_int (a*b' + b*a') / (of_int b* of_int b') = ?z" by simp - hence "of_int b' * of_int a / (of_int b * of_int b') + of_int b * of_int a' / (of_int b * of_int b') = ?z" by (simp add:add_divide_distrib) - hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' by simp - from z aa' bb' have ?thesis - by (simp add: th Nadd_def normNum_def INum_def split_def)} - moreover {assume z: "a * b' + b * a' \ 0" + hence "of_int b' * of_int a / (of_int b * of_int b') + + of_int b * of_int a' / (of_int b * of_int b') = ?z" + by (simp add:add_divide_distrib) + hence th: "of_int a / of_int b + of_int a' / of_int b' = ?z" using bb' aa' + by simp + from z aa' bb' have ?thesis + by (simp add: x y th Nadd_def normNum_def INum_def split_def) } + moreover { + assume z: "a * b' + b * a' \ 0" let ?g = "gcd (a * b' + b * a') (b*b')" have gz: "?g \ 0" using z by simp have ?thesis using aa' bb' z gz - of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]] of_int_div[where ?'a = 'a, - OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]] - by (simp add: Nadd_def INum_def normNum_def Let_def add_divide_distrib)} - ultimately have ?thesis using aa' bb' - by (simp add: Nadd_def INum_def normNum_def Let_def) } + of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a * b' + b * a'" and y="b*b'"]] + of_int_div[where ?'a = 'a, OF gz gcd_dvd2_int[where x="a * b' + b * a'" and y="b*b'"]] + by (simp add: x y Nadd_def INum_def normNum_def Let_def add_divide_distrib) } + ultimately have ?thesis using aa' bb' + by (simp add: x y Nadd_def INum_def normNum_def Let_def) } ultimately show ?thesis by blast qed -lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero}) " -proof- +lemma Nmul[simp]: "INum (x *\<^sub>N y) = INum x * (INum y:: 'a :: {field_char_0, field_inverse_zero})" +proof - let ?z = "0::'a" - have " \ a b. x = (a,b)" " \ a' b'. y = (a',b')" by auto - then obtain a b a' b' where x: "x = (a,b)" and y: "y = (a',b')" by blast - {assume "a=0 \ a'= 0 \ b = 0 \ b' = 0" hence ?thesis - apply (cases "a=0",simp_all add: x y Nmul_def INum_def Let_def) - apply (cases "b=0",simp_all) - apply (cases "a'=0",simp_all) + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + { assume "a=0 \ a'= 0 \ b = 0 \ b' = 0" + hence ?thesis + apply (cases "a=0", simp_all add: x y Nmul_def INum_def Let_def) + apply (cases "b=0", simp_all) + apply (cases "a'=0", simp_all) done } moreover - {assume z: "a \ 0" "a' \ 0" "b \ 0" "b' \ 0" + { assume z: "a \ 0" "a' \ 0" "b \ 0" "b' \ 0" let ?g="gcd (a*a') (b*b')" have gz: "?g \ 0" using z by simp - from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]] - of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]] - have ?thesis by (simp add: Nmul_def x y Let_def INum_def)} + from z of_int_div[where ?'a = 'a, OF gz gcd_dvd1_int[where x="a*a'" and y="b*b'"]] + of_int_div[where ?'a = 'a , OF gz gcd_dvd2_int[where x="a*a'" and y="b*b'"]] + have ?thesis by (simp add: Nmul_def x y Let_def INum_def) } ultimately show ?thesis by blast qed lemma Nneg[simp]: "INum (~\<^sub>N x) = - (INum x ::'a:: field)" by (simp add: Nneg_def split_def INum_def) -lemma Nsub[simp]: shows "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})" -by (simp add: Nsub_def split_def) +lemma Nsub[simp]: "INum (x -\<^sub>N y) = INum x - (INum y:: 'a :: {field_char_0, field_inverse_zero})" + by (simp add: Nsub_def split_def) lemma Ninv[simp]: "INum (Ninv x) = (1::'a :: field_inverse_zero) / (INum x)" by (simp add: Ninv_def INum_def split_def) -lemma Ndiv[simp]: "INum (x \
\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})" by (simp add: Ndiv_def) +lemma Ndiv[simp]: "INum (x \
\<^sub>N y) = INum x / (INum y ::'a :: {field_char_0, field_inverse_zero})" + by (simp add: Ndiv_def) -lemma Nlt0_iff[simp]: assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x " -proof- - have " \ a b. x = (a,b)" by simp - then obtain a b where x[simp]:"x = (a,b)" by blast - {assume "a = 0" hence ?thesis by (simp add: Nlt0_def INum_def) } +lemma Nlt0_iff[simp]: + assumes nx: "isnormNum x" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})< 0) = 0>\<^sub>N x" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Nlt0_def INum_def) } moreover - {assume a: "a\0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) + { assume a: "a \ 0" hence b: "(of_int b::'a) > 0" + using nx by (simp add: x isnormNum_def) from pos_divide_less_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: Nlt0_def INum_def)} + have ?thesis by (simp add: x Nlt0_def INum_def) } ultimately show ?thesis by blast qed -lemma Nle0_iff[simp]:assumes nx: "isnormNum x" +lemma Nle0_iff[simp]: + assumes nx: "isnormNum x" shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \ 0) = 0\\<^sub>N x" -proof- - have " \ a b. x = (a,b)" by simp - then obtain a b where x[simp]:"x = (a,b)" by blast - {assume "a = 0" hence ?thesis by (simp add: Nle0_def INum_def) } +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Nle0_def INum_def) } moreover - {assume a: "a\0" hence b: "(of_int b :: 'a) > 0" using nx by (simp add: isnormNum_def) + { assume a: "a \ 0" hence b: "(of_int b :: 'a) > 0" + using nx by (simp add: x isnormNum_def) from pos_divide_le_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: Nle0_def INum_def)} + have ?thesis by (simp add: x Nle0_def INum_def) } ultimately show ?thesis by blast qed -lemma Ngt0_iff[simp]:assumes nx: "isnormNum x" shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x" -proof- - have " \ a b. x = (a,b)" by simp - then obtain a b where x[simp]:"x = (a,b)" by blast - {assume "a = 0" hence ?thesis by (simp add: Ngt0_def INum_def) } +lemma Ngt0_iff[simp]: + assumes nx: "isnormNum x" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})> 0) = 0<\<^sub>N x" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Ngt0_def INum_def) } moreover - {assume a: "a\0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) + { assume a: "a \ 0" hence b: "(of_int b::'a) > 0" using nx + by (simp add: x isnormNum_def) from pos_less_divide_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: Ngt0_def INum_def)} - ultimately show ?thesis by blast -qed -lemma Nge0_iff[simp]:assumes nx: "isnormNum x" - shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \ 0) = 0\\<^sub>N x" -proof- - have " \ a b. x = (a,b)" by simp - then obtain a b where x[simp]:"x = (a,b)" by blast - {assume "a = 0" hence ?thesis by (simp add: Nge0_def INum_def) } - moreover - {assume a: "a\0" hence b: "(of_int b::'a) > 0" using nx by (simp add: isnormNum_def) - from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] - have ?thesis by (simp add: Nge0_def INum_def)} + have ?thesis by (simp add: x Ngt0_def INum_def) } ultimately show ?thesis by blast qed -lemma Nlt_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" +lemma Nge0_iff[simp]: + assumes nx: "isnormNum x" + shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) \ 0) = 0\\<^sub>N x" +proof - + obtain a b where x: "x = (a, b)" by (cases x) + { assume "a = 0" hence ?thesis by (simp add: x Nge0_def INum_def) } + moreover + { assume "a \ 0" hence b: "(of_int b::'a) > 0" using nx + by (simp add: x isnormNum_def) + from pos_le_divide_eq[OF b, where b="of_int a" and a="0::'a"] + have ?thesis by (simp add: x Nge0_def INum_def) } + ultimately show ?thesis by blast +qed + +lemma Nlt_iff[simp]: + assumes nx: "isnormNum x" and ny: "isnormNum y" shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero}) < INum y) = (x <\<^sub>N y)" -proof- +proof - let ?z = "0::'a" - have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" using nx ny by simp - also have "\ = (0>\<^sub>N (x -\<^sub>N y))" using Nlt0_iff[OF Nsub_normN[OF ny]] by simp + have "((INum x ::'a) < INum y) = (INum (x -\<^sub>N y) < ?z)" + using nx ny by simp + also have "\ = (0>\<^sub>N (x -\<^sub>N y))" + using Nlt0_iff[OF Nsub_normN[OF ny]] by simp finally show ?thesis by (simp add: Nlt_def) qed -lemma Nle_iff[simp]: assumes nx: "isnormNum x" and ny: "isnormNum y" +lemma Nle_iff[simp]: + assumes nx: "isnormNum x" and ny: "isnormNum y" shows "((INum x :: 'a :: {field_char_0, linordered_field_inverse_zero})\ INum y) = (x \\<^sub>N y)" -proof- - have "((INum x ::'a) \ INum y) = (INum (x -\<^sub>N y) \ (0::'a))" using nx ny by simp - also have "\ = (0\\<^sub>N (x -\<^sub>N y))" using Nle0_iff[OF Nsub_normN[OF ny]] by simp +proof - + have "((INum x ::'a) \ INum y) = (INum (x -\<^sub>N y) \ (0::'a))" + using nx ny by simp + also have "\ = (0\\<^sub>N (x -\<^sub>N y))" + using Nle0_iff[OF Nsub_normN[OF ny]] by simp finally show ?thesis by (simp add: Nle_def) qed lemma Nadd_commute: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" shows "x +\<^sub>N y = y +\<^sub>N x" -proof- +proof - have n: "isnormNum (x +\<^sub>N y)" "isnormNum (y +\<^sub>N x)" by simp_all have "(INum (x +\<^sub>N y)::'a) = INum (y +\<^sub>N x)" by simp with isnormNum_unique[OF n] show ?thesis by simp @@ -409,7 +401,7 @@ lemma [simp]: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" shows "(0, b) +\<^sub>N y = normNum y" - and "(a, 0) +\<^sub>N y = normNum y" + and "(a, 0) +\<^sub>N y = normNum y" and "x +\<^sub>N (0, b) = normNum x" and "x +\<^sub>N (a, 0) = normNum x" apply (simp add: Nadd_def split_def) @@ -420,14 +412,13 @@ lemma normNum_nilpotent_aux[simp]: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes nx: "isnormNum x" + assumes nx: "isnormNum x" shows "normNum x = x" -proof- +proof - let ?a = "normNum x" have n: "isnormNum ?a" by simp - have th:"INum ?a = (INum x ::'a)" by simp - with isnormNum_unique[OF n nx] - show ?thesis by simp + have th: "INum ?a = (INum x ::'a)" by simp + with isnormNum_unique[OF n nx] show ?thesis by simp qed lemma normNum_nilpotent[simp]: @@ -445,7 +436,7 @@ lemma Nadd_normNum1[simp]: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" shows "normNum x +\<^sub>N y = x +\<^sub>N y" -proof- +proof - have n: "isnormNum (normNum x +\<^sub>N y)" "isnormNum (x +\<^sub>N y)" by simp_all have "INum (normNum x +\<^sub>N y) = INum x + (INum y :: 'a)" by simp also have "\ = INum (x +\<^sub>N y)" by simp @@ -455,7 +446,7 @@ lemma Nadd_normNum2[simp]: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" shows "x +\<^sub>N normNum y = x +\<^sub>N y" -proof- +proof - have n: "isnormNum (x +\<^sub>N normNum y)" "isnormNum (x +\<^sub>N y)" by simp_all have "INum (x +\<^sub>N normNum y) = INum x + (INum y :: 'a)" by simp also have "\ = INum (x +\<^sub>N y)" by simp @@ -465,7 +456,7 @@ lemma Nadd_assoc: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" shows "x +\<^sub>N y +\<^sub>N z = x +\<^sub>N (y +\<^sub>N z)" -proof- +proof - have n: "isnormNum (x +\<^sub>N y +\<^sub>N z)" "isnormNum (x +\<^sub>N (y +\<^sub>N z))" by simp_all have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp with isnormNum_unique[OF n] show ?thesis by simp @@ -476,10 +467,10 @@ lemma Nmul_assoc: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes nx: "isnormNum x" and ny:"isnormNum y" and nz:"isnormNum z" + assumes nx: "isnormNum x" and ny: "isnormNum y" and nz: "isnormNum z" shows "x *\<^sub>N y *\<^sub>N z = x *\<^sub>N (y *\<^sub>N z)" -proof- - from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" +proof - + from nx ny nz have n: "isnormNum (x *\<^sub>N y *\<^sub>N z)" "isnormNum (x *\<^sub>N (y *\<^sub>N z))" by simp_all have "INum (x +\<^sub>N y +\<^sub>N z) = (INum (x +\<^sub>N (y +\<^sub>N z)) :: 'a)" by simp with isnormNum_unique[OF n] show ?thesis by simp @@ -487,14 +478,15 @@ lemma Nsub0: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes x: "isnormNum x" and y:"isnormNum y" shows "(x -\<^sub>N y = 0\<^sub>N) = (x = y)" -proof- - { fix h :: 'a - from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] - have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp - also have "\ = (INum x = (INum y :: 'a))" by simp - also have "\ = (x = y)" using x y by simp - finally show ?thesis . } + assumes x: "isnormNum x" and y: "isnormNum y" + shows "x -\<^sub>N y = 0\<^sub>N \ x = y" +proof - + fix h :: 'a + from isnormNum_unique[where 'a = 'a, OF Nsub_normN[OF y], where y="0\<^sub>N"] + have "(x -\<^sub>N y = 0\<^sub>N) = (INum (x -\<^sub>N y) = (INum 0\<^sub>N :: 'a)) " by simp + also have "\ = (INum x = (INum y :: 'a))" by simp + also have "\ = (x = y)" using x y by simp + finally show ?thesis . qed lemma Nmul0[simp]: "c *\<^sub>N 0\<^sub>N = 0\<^sub>N" " 0\<^sub>N *\<^sub>N c = 0\<^sub>N" @@ -502,24 +494,26 @@ lemma Nmul_eq0[simp]: assumes "SORT_CONSTRAINT('a::{field_char_0, field_inverse_zero})" - assumes nx:"isnormNum x" and ny: "isnormNum y" - shows "(x*\<^sub>N y = 0\<^sub>N) = (x = 0\<^sub>N \ y = 0\<^sub>N)" -proof- - { fix h :: 'a - have " \ a b a' b'. x = (a,b) \ y= (a',b')" by auto - then obtain a b a' b' where xy[simp]: "x = (a,b)" "y = (a',b')" by blast - have n0: "isnormNum 0\<^sub>N" by simp - show ?thesis using nx ny - apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] Nmul[where ?'a = 'a]) - by (simp add: INum_def split_def isnormNum_def split: split_if_asm) - } + assumes nx: "isnormNum x" and ny: "isnormNum y" + shows "x*\<^sub>N y = 0\<^sub>N \ x = 0\<^sub>N \ y = 0\<^sub>N" +proof - + fix h :: 'a + obtain a b where x: "x = (a, b)" by (cases x) + obtain a' b' where y: "y = (a', b')" by (cases y) + have n0: "isnormNum 0\<^sub>N" by simp + show ?thesis using nx ny + apply (simp only: isnormNum_unique[where ?'a = 'a, OF Nmul_normN[OF nx ny] n0, symmetric] + Nmul[where ?'a = 'a]) + apply (simp add: x y INum_def split_def isnormNum_def split: split_if_asm) + done qed + lemma Nneg_Nneg[simp]: "~\<^sub>N (~\<^sub>N c) = c" by (simp add: Nneg_def split_def) -lemma Nmul1[simp]: - "isnormNum c \ 1\<^sub>N *\<^sub>N c = c" - "isnormNum c \ c *\<^sub>N (1\<^sub>N) = c" +lemma Nmul1[simp]: + "isnormNum c \ 1\<^sub>N *\<^sub>N c = c" + "isnormNum c \ c *\<^sub>N (1\<^sub>N) = c" apply (simp_all add: Nmul_def Let_def split_def isnormNum_def) apply (cases "fst c = 0", simp_all, cases c, simp_all)+ done