# HG changeset patch # User haftmann # Date 1268236407 -3600 # Node ID 99b6152aedf509a56eadcc118210b5b39b7399cb # Parent abf91fba0a70bbbb957f0ca484ccff92430547e8 split off theory Big_Operators from theory Finite_Set diff -r abf91fba0a70 -r 99b6152aedf5 src/HOL/Big_Operators.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Big_Operators.thy Wed Mar 10 16:53:27 2010 +0100 @@ -0,0 +1,2062 @@ +(* Title: HOL/Big_Operators.thy + Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel + with contributions by Jeremy Avigad +*) + +header {* Big operators and finite (non-empty) sets *} + +theory Big_Operators +imports Finite_Set +begin + +subsection {* Generalized summation over a set *} + +interpretation comm_monoid_add: comm_monoid_mult "op +" "0::'a::comm_monoid_add" + proof qed (auto intro: add_assoc add_commute) + +definition setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add" +where "setsum f A == if finite A then fold_image (op +) f 0 A else 0" + +abbreviation + Setsum ("\_" [1000] 999) where + "\A == setsum (%x. x) A" + +text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is +written @{text"\x\A. e"}. *} + +syntax + "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10) +syntax (xsymbols) + "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\_\_. _)" [0, 51, 10] 10) +syntax (HTML output) + "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\_\_. _)" [0, 51, 10] 10) + +translations -- {* Beware of argument permutation! *} + "SUM i:A. b" == "CONST setsum (%i. b) A" + "\i\A. b" == "CONST setsum (%i. b) A" + +text{* Instead of @{term"\x\{x. P}. e"} we introduce the shorter + @{text"\x|P. e"}. *} + +syntax + "_qsetsum" :: "pttrn \ bool \ 'a \ 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10) +syntax (xsymbols) + "_qsetsum" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) +syntax (HTML output) + "_qsetsum" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) + +translations + "SUM x|P. t" => "CONST setsum (%x. t) {x. P}" + "\x|P. t" => "CONST setsum (%x. t) {x. P}" + +print_translation {* +let + fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] = + if x <> y then raise Match + else + let + val x' = Syntax.mark_bound x; + val t' = subst_bound (x', t); + val P' = subst_bound (x', P); + in Syntax.const @{syntax_const "_qsetsum"} $ Syntax.mark_bound x $ P' $ t' end + | setsum_tr' _ = raise Match; +in [(@{const_syntax setsum}, setsum_tr')] end +*} + + +lemma setsum_empty [simp]: "setsum f {} = 0" +by (simp add: setsum_def) + +lemma setsum_insert [simp]: + "finite F ==> a \ F ==> setsum f (insert a F) = f a + setsum f F" +by (simp add: setsum_def) + +lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0" +by (simp add: setsum_def) + +lemma setsum_reindex: + "inj_on f B ==> setsum h (f ` B) = setsum (h \ f) B" +by(auto simp add: setsum_def comm_monoid_add.fold_image_reindex dest!:finite_imageD) + +lemma setsum_reindex_id: + "inj_on f B ==> setsum f B = setsum id (f ` B)" +by (auto simp add: setsum_reindex) + +lemma setsum_reindex_nonzero: + assumes fS: "finite S" + and nz: "\ x y. x \ S \ y \ S \ x \ y \ f x = f y \ h (f x) = 0" + shows "setsum h (f ` S) = setsum (h o f) S" +using nz +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by simp +next + case (2 x F) + {assume fxF: "f x \ f ` F" hence "\y \ F . f y = f x" by auto + then obtain y where y: "y \ F" "f x = f y" by auto + from "2.hyps" y have xy: "x \ y" by auto + + from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp + have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto + also have "\ = setsum (h o f) (insert x F)" + unfolding setsum_insert[OF `finite F` `x\F`] + using h0 + apply simp + apply (rule "2.hyps"(3)) + apply (rule_tac y="y" in "2.prems") + apply simp_all + done + finally have ?case .} + moreover + {assume fxF: "f x \ f ` F" + have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)" + using fxF "2.hyps" by simp + also have "\ = setsum (h o f) (insert x F)" + unfolding setsum_insert[OF `finite F` `x\F`] + apply simp + apply (rule cong[OF refl[of "op + (h (f x))"]]) + apply (rule "2.hyps"(3)) + apply (rule_tac y="y" in "2.prems") + apply simp_all + done + finally have ?case .} + ultimately show ?case by blast +qed + +lemma setsum_cong: + "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" +by(fastsimp simp: setsum_def intro: comm_monoid_add.fold_image_cong) + +lemma strong_setsum_cong[cong]: + "A = B ==> (!!x. x:B =simp=> f x = g x) + ==> setsum (%x. f x) A = setsum (%x. g x) B" +by(fastsimp simp: simp_implies_def setsum_def intro: comm_monoid_add.fold_image_cong) + +lemma setsum_cong2: "\\x. x \ A \ f x = g x\ \ setsum f A = setsum g A" +by (rule setsum_cong[OF refl], auto) + +lemma setsum_reindex_cong: + "[|inj_on f A; B = f ` A; !!a. a:A \ g a = h (f a)|] + ==> setsum h B = setsum g A" +by (simp add: setsum_reindex cong: setsum_cong) + + +lemma setsum_0[simp]: "setsum (%i. 0) A = 0" +apply (clarsimp simp: setsum_def) +apply (erule finite_induct, auto) +done + +lemma setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0" +by(simp add:setsum_cong) + +lemma setsum_Un_Int: "finite A ==> finite B ==> + setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" + -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} +by(simp add: setsum_def comm_monoid_add.fold_image_Un_Int [symmetric]) + +lemma setsum_Un_disjoint: "finite A ==> finite B + ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B" +by (subst setsum_Un_Int [symmetric], auto) + +lemma setsum_mono_zero_left: + assumes fT: "finite T" and ST: "S \ T" + and z: "\i \ T - S. f i = 0" + shows "setsum f S = setsum f T" +proof- + have eq: "T = S \ (T - S)" using ST by blast + have d: "S \ (T - S) = {}" using ST by blast + from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) + show ?thesis + by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) +qed + +lemma setsum_mono_zero_right: + "finite T \ S \ T \ \i \ T - S. f i = 0 \ setsum f T = setsum f S" +by(blast intro!: setsum_mono_zero_left[symmetric]) + +lemma setsum_mono_zero_cong_left: + assumes fT: "finite T" and ST: "S \ T" + and z: "\i \ T - S. g i = 0" + and fg: "\x. x \ S \ f x = g x" + shows "setsum f S = setsum g T" +proof- + have eq: "T = S \ (T - S)" using ST by blast + have d: "S \ (T - S) = {}" using ST by blast + from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) + show ?thesis + using fg by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) +qed + +lemma setsum_mono_zero_cong_right: + assumes fT: "finite T" and ST: "S \ T" + and z: "\i \ T - S. f i = 0" + and fg: "\x. x \ S \ f x = g x" + shows "setsum f T = setsum g S" +using setsum_mono_zero_cong_left[OF fT ST z] fg[symmetric] by auto + +lemma setsum_delta: + assumes fS: "finite S" + shows "setsum (\k. if k=a then b k else 0) S = (if a \ S then b a else 0)" +proof- + let ?f = "(\k. if k=a then b k else 0)" + {assume a: "a \ S" + hence "\ k\ S. ?f k = 0" by simp + hence ?thesis using a by simp} + moreover + {assume a: "a \ S" + let ?A = "S - {a}" + let ?B = "{a}" + have eq: "S = ?A \ ?B" using a by blast + have dj: "?A \ ?B = {}" by simp + from fS have fAB: "finite ?A" "finite ?B" by auto + have "setsum ?f S = setsum ?f ?A + setsum ?f ?B" + using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] + by simp + then have ?thesis using a by simp} + ultimately show ?thesis by blast +qed +lemma setsum_delta': + assumes fS: "finite S" shows + "setsum (\k. if a = k then b k else 0) S = + (if a\ S then b a else 0)" + using setsum_delta[OF fS, of a b, symmetric] + by (auto intro: setsum_cong) + +lemma setsum_restrict_set: + assumes fA: "finite A" + shows "setsum f (A \ B) = setsum (\x. if x \ B then f x else 0) A" +proof- + from fA have fab: "finite (A \ B)" by auto + have aba: "A \ B \ A" by blast + let ?g = "\x. if x \ A\B then f x else 0" + from setsum_mono_zero_left[OF fA aba, of ?g] + show ?thesis by simp +qed + +lemma setsum_cases: + assumes fA: "finite A" + shows "setsum (\x. if P x then f x else g x) A = + setsum f (A \ {x. P x}) + setsum g (A \ - {x. P x})" +proof- + have a: "A = A \ {x. P x} \ A \ -{x. P x}" + "(A \ {x. P x}) \ (A \ -{x. P x}) = {}" + by blast+ + from fA + have f: "finite (A \ {x. P x})" "finite (A \ -{x. P x})" by auto + let ?g = "\x. if P x then f x else g x" + from setsum_Un_disjoint[OF f a(2), of ?g] a(1) + show ?thesis by simp +qed + + +(*But we can't get rid of finite I. If infinite, although the rhs is 0, + the lhs need not be, since UNION I A could still be finite.*) +lemma setsum_UN_disjoint: + "finite I ==> (ALL i:I. finite (A i)) ==> + (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) ==> + setsum f (UNION I A) = (\i\I. setsum f (A i))" +by(simp add: setsum_def comm_monoid_add.fold_image_UN_disjoint cong: setsum_cong) + +text{*No need to assume that @{term C} is finite. If infinite, the rhs is +directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*} +lemma setsum_Union_disjoint: + "[| (ALL A:C. finite A); + (ALL A:C. ALL B:C. A \ B --> A Int B = {}) |] + ==> setsum f (Union C) = setsum (setsum f) C" +apply (cases "finite C") + prefer 2 apply (force dest: finite_UnionD simp add: setsum_def) + apply (frule setsum_UN_disjoint [of C id f]) + apply (unfold Union_def id_def, assumption+) +done + +(*But we can't get rid of finite A. If infinite, although the lhs is 0, + the rhs need not be, since SIGMA A B could still be finite.*) +lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==> + (\x\A. (\y\B x. f x y)) = (\(x,y)\(SIGMA x:A. B x). f x y)" +by(simp add:setsum_def comm_monoid_add.fold_image_Sigma split_def cong:setsum_cong) + +text{*Here we can eliminate the finiteness assumptions, by cases.*} +lemma setsum_cartesian_product: + "(\x\A. (\y\B. f x y)) = (\(x,y) \ A <*> B. f x y)" +apply (cases "finite A") + apply (cases "finite B") + apply (simp add: setsum_Sigma) + apply (cases "A={}", simp) + apply (simp) +apply (auto simp add: setsum_def + dest: finite_cartesian_productD1 finite_cartesian_productD2) +done + +lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" +by(simp add:setsum_def comm_monoid_add.fold_image_distrib) + + +subsubsection {* Properties in more restricted classes of structures *} + +lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" +apply (case_tac "finite A") + prefer 2 apply (simp add: setsum_def) +apply (erule rev_mp) +apply (erule finite_induct, auto) +done + +lemma setsum_eq_0_iff [simp]: + "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" +by (induct set: finite) auto + +lemma setsum_eq_Suc0_iff: "finite A \ + (setsum f A = Suc 0) = (EX a:A. f a = Suc 0 & (ALL b:A. a\b \ f b = 0))" +apply(erule finite_induct) +apply (auto simp add:add_is_1) +done + +lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]] + +lemma setsum_Un_nat: "finite A ==> finite B ==> + (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" + -- {* For the natural numbers, we have subtraction. *} +by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) + +lemma setsum_Un: "finite A ==> finite B ==> + (setsum f (A Un B) :: 'a :: ab_group_add) = + setsum f A + setsum f B - setsum f (A Int B)" +by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) + +lemma (in comm_monoid_mult) fold_image_1: "finite S \ (\x\S. f x = 1) \ fold_image op * f 1 S = 1" + apply (induct set: finite) + apply simp by auto + +lemma (in comm_monoid_mult) fold_image_Un_one: + assumes fS: "finite S" and fT: "finite T" + and I0: "\x \ S\T. f x = 1" + shows "fold_image (op *) f 1 (S \ T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T" +proof- + have "fold_image op * f 1 (S \ T) = 1" + apply (rule fold_image_1) + using fS fT I0 by auto + with fold_image_Un_Int[OF fS fT] show ?thesis by simp +qed + +lemma setsum_eq_general_reverses: + assumes fS: "finite S" and fT: "finite T" + and kh: "\y. y \ T \ k y \ S \ h (k y) = y" + and hk: "\x. x \ S \ h x \ T \ k (h x) = x \ g (h x) = f x" + shows "setsum f S = setsum g T" + apply (simp add: setsum_def fS fT) + apply (rule comm_monoid_add.fold_image_eq_general_inverses[OF fS]) + apply (erule kh) + apply (erule hk) + done + + + +lemma setsum_Un_zero: + assumes fS: "finite S" and fT: "finite T" + and I0: "\x \ S\T. f x = 0" + shows "setsum f (S \ T) = setsum f S + setsum f T" + using fS fT + apply (simp add: setsum_def) + apply (rule comm_monoid_add.fold_image_Un_one) + using I0 by auto + + +lemma setsum_UNION_zero: + assumes fS: "finite S" and fSS: "\T \ S. finite T" + and f0: "\T1 T2 x. T1\S \ T2\S \ T1 \ T2 \ x \ T1 \ x \ T2 \ f x = 0" + shows "setsum f (\S) = setsum (\T. setsum f T) S" + using fSS f0 +proof(induct rule: finite_induct[OF fS]) + case 1 thus ?case by simp +next + case (2 T F) + then have fTF: "finite T" "\T\F. finite T" "finite F" and TF: "T \ F" + and H: "setsum f (\ F) = setsum (setsum f) F" by auto + from fTF have fUF: "finite (\F)" by auto + from "2.prems" TF fTF + show ?case + by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f]) +qed + + +lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) = + (if a:A then setsum f A - f a else setsum f A)" +apply (case_tac "finite A") + prefer 2 apply (simp add: setsum_def) +apply (erule finite_induct) + apply (auto simp add: insert_Diff_if) +apply (drule_tac a = a in mk_disjoint_insert, auto) +done + +lemma setsum_diff1: "finite A \ + (setsum f (A - {a}) :: ('a::ab_group_add)) = + (if a:A then setsum f A - f a else setsum f A)" +by (erule finite_induct) (auto simp add: insert_Diff_if) + +lemma setsum_diff1'[rule_format]: + "finite A \ a \ A \ (\ x \ A. f x) = f a + (\ x \ (A - {a}). f x)" +apply (erule finite_induct[where F=A and P="% A. (a \ A \ (\ x \ A. f x) = f a + (\ x \ (A - {a}). f x))"]) +apply (auto simp add: insert_Diff_if add_ac) +done + +lemma setsum_diff1_ring: assumes "finite A" "a \ A" + shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)" +unfolding setsum_diff1'[OF assms] by auto + +(* By Jeremy Siek: *) + +lemma setsum_diff_nat: +assumes "finite B" and "B \ A" +shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" +using assms +proof induct + show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp +next + fix F x assume finF: "finite F" and xnotinF: "x \ F" + and xFinA: "insert x F \ A" + and IH: "F \ A \ setsum f (A - F) = setsum f A - setsum f F" + from xnotinF xFinA have xinAF: "x \ (A - F)" by simp + from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x" + by (simp add: setsum_diff1_nat) + from xFinA have "F \ A" by simp + with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp + with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x" + by simp + from xnotinF have "A - insert x F = (A - F) - {x}" by auto + with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" + by simp + from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp + with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" + by simp + thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp +qed + +lemma setsum_diff: + assumes le: "finite A" "B \ A" + shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))" +proof - + from le have finiteB: "finite B" using finite_subset by auto + show ?thesis using finiteB le + proof induct + case empty + thus ?case by auto + next + case (insert x F) + thus ?case using le finiteB + by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) + qed +qed + +lemma setsum_mono: + assumes le: "\i. i\K \ f (i::'a) \ ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))" + shows "(\i\K. f i) \ (\i\K. g i)" +proof (cases "finite K") + case True + thus ?thesis using le + proof induct + case empty + thus ?case by simp + next + case insert + thus ?case using add_mono by fastsimp + qed +next + case False + thus ?thesis + by (simp add: setsum_def) +qed + +lemma setsum_strict_mono: + fixes f :: "'a \ 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}" + assumes "finite A" "A \ {}" + and "!!x. x:A \ f x < g x" + shows "setsum f A < setsum g A" + using prems +proof (induct rule: finite_ne_induct) + case singleton thus ?case by simp +next + case insert thus ?case by (auto simp: add_strict_mono) +qed + +lemma setsum_negf: + "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" +proof (cases "finite A") + case True thus ?thesis by (induct set: finite) auto +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_subtractf: + "setsum (%x. ((f x)::'a::ab_group_add) - g x) A = + setsum f A - setsum g A" +proof (cases "finite A") + case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf) +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_nonneg: + assumes nn: "\x\A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \ f x" + shows "0 \ setsum f A" +proof (cases "finite A") + case True thus ?thesis using nn + proof induct + case empty then show ?case by simp + next + case (insert x F) + then have "0 + 0 \ f x + setsum f F" by (blast intro: add_mono) + with insert show ?case by simp + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_nonpos: + assumes np: "\x\A. f x \ (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})" + shows "setsum f A \ 0" +proof (cases "finite A") + case True thus ?thesis using np + proof induct + case empty then show ?case by simp + next + case (insert x F) + then have "f x + setsum f F \ 0 + 0" by (blast intro: add_mono) + with insert show ?case by simp + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_mono2: +fixes f :: "'a \ 'b :: {ordered_ab_semigroup_add_imp_le,comm_monoid_add}" +assumes fin: "finite B" and sub: "A \ B" and nn: "\b. b \ B-A \ 0 \ f b" +shows "setsum f A \ setsum f B" +proof - + have "setsum f A \ setsum f A + setsum f (B-A)" + by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) + also have "\ = setsum f (A \ (B-A))" using fin finite_subset[OF sub fin] + by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) + also have "A \ (B-A) = B" using sub by blast + finally show ?thesis . +qed + +lemma setsum_mono3: "finite B ==> A <= B ==> + ALL x: B - A. + 0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==> + setsum f A <= setsum f B" + apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") + apply (erule ssubst) + apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") + apply simp + apply (rule add_left_mono) + apply (erule setsum_nonneg) + apply (subst setsum_Un_disjoint [THEN sym]) + apply (erule finite_subset, assumption) + apply (rule finite_subset) + prefer 2 + apply assumption + apply (auto simp add: sup_absorb2) +done + +lemma setsum_right_distrib: + fixes f :: "'a => ('b::semiring_0)" + shows "r * setsum f A = setsum (%n. r * f n) A" +proof (cases "finite A") + case True + thus ?thesis + proof induct + case empty thus ?case by simp + next + case (insert x A) thus ?case by (simp add: right_distrib) + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_left_distrib: + "setsum f A * (r::'a::semiring_0) = (\n\A. f n * r)" +proof (cases "finite A") + case True + then show ?thesis + proof induct + case empty thus ?case by simp + next + case (insert x A) thus ?case by (simp add: left_distrib) + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_divide_distrib: + "setsum f A / (r::'a::field) = (\n\A. f n / r)" +proof (cases "finite A") + case True + then show ?thesis + proof induct + case empty thus ?case by simp + next + case (insert x A) thus ?case by (simp add: add_divide_distrib) + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_abs[iff]: + fixes f :: "'a => ('b::ordered_ab_group_add_abs)" + shows "abs (setsum f A) \ setsum (%i. abs(f i)) A" +proof (cases "finite A") + case True + thus ?thesis + proof induct + case empty thus ?case by simp + next + case (insert x A) + thus ?case by (auto intro: abs_triangle_ineq order_trans) + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma setsum_abs_ge_zero[iff]: + fixes f :: "'a => ('b::ordered_ab_group_add_abs)" + shows "0 \ setsum (%i. abs(f i)) A" +proof (cases "finite A") + case True + thus ?thesis + proof induct + case empty thus ?case by simp + next + case (insert x A) thus ?case by (auto simp: add_nonneg_nonneg) + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + +lemma abs_setsum_abs[simp]: + fixes f :: "'a => ('b::ordered_ab_group_add_abs)" + shows "abs (\a\A. abs(f a)) = (\a\A. abs(f a))" +proof (cases "finite A") + case True + thus ?thesis + proof induct + case empty thus ?case by simp + next + case (insert a A) + hence "\\a\insert a A. \f a\\ = \\f a\ + (\a\A. \f a\)\" by simp + also have "\ = \\f a\ + \\a\A. \f a\\\" using insert by simp + also have "\ = \f a\ + \\a\A. \f a\\" + by (simp del: abs_of_nonneg) + also have "\ = (\a\insert a A. \f a\)" using insert by simp + finally show ?case . + qed +next + case False thus ?thesis by (simp add: setsum_def) +qed + + +lemma setsum_Plus: + fixes A :: "'a set" and B :: "'b set" + assumes fin: "finite A" "finite B" + shows "setsum f (A <+> B) = setsum (f \ Inl) A + setsum (f \ Inr) B" +proof - + have "A <+> B = Inl ` A \ Inr ` B" by auto + moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)" + by(auto intro: finite_imageI) + moreover have "Inl ` A \ Inr ` B = ({} :: ('a + 'b) set)" by auto + moreover have "inj_on (Inl :: 'a \ 'a + 'b) A" "inj_on (Inr :: 'b \ 'a + 'b) B" by(auto intro: inj_onI) + ultimately show ?thesis using fin by(simp add: setsum_Un_disjoint setsum_reindex) +qed + + +text {* Commuting outer and inner summation *} + +lemma swap_inj_on: + "inj_on (%(i, j). (j, i)) (A \ B)" + by (unfold inj_on_def) fast + +lemma swap_product: + "(%(i, j). (j, i)) ` (A \ B) = B \ A" + by (simp add: split_def image_def) blast + +lemma setsum_commute: + "(\i\A. \j\B. f i j) = (\j\B. \i\A. f i j)" +proof (simp add: setsum_cartesian_product) + have "(\(x,y) \ A <*> B. f x y) = + (\(y,x) \ (%(i, j). (j, i)) ` (A \ B). f x y)" + (is "?s = _") + apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on) + apply (simp add: split_def) + done + also have "... = (\(y,x)\B \ A. f x y)" + (is "_ = ?t") + apply (simp add: swap_product) + done + finally show "?s = ?t" . +qed + +lemma setsum_product: + fixes f :: "'a => ('b::semiring_0)" + shows "setsum f A * setsum g B = (\i\A. \j\B. f i * g j)" + by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute) + +lemma setsum_mult_setsum_if_inj: +fixes f :: "'a => ('b::semiring_0)" +shows "inj_on (%(a,b). f a * g b) (A \ B) ==> + setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}" +by(auto simp: setsum_product setsum_cartesian_product + intro!: setsum_reindex_cong[symmetric]) + + +subsection {* Generalized product over a set *} + +definition setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult" +where "setprod f A == if finite A then fold_image (op *) f 1 A else 1" + +abbreviation + Setprod ("\_" [1000] 999) where + "\A == setprod (%x. x) A" + +syntax + "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10) +syntax (xsymbols) + "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\_\_. _)" [0, 51, 10] 10) +syntax (HTML output) + "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\_\_. _)" [0, 51, 10] 10) + +translations -- {* Beware of argument permutation! *} + "PROD i:A. b" == "CONST setprod (%i. b) A" + "\i\A. b" == "CONST setprod (%i. b) A" + +text{* Instead of @{term"\x\{x. P}. e"} we introduce the shorter + @{text"\x|P. e"}. *} + +syntax + "_qsetprod" :: "pttrn \ bool \ 'a \ 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10) +syntax (xsymbols) + "_qsetprod" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) +syntax (HTML output) + "_qsetprod" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) + +translations + "PROD x|P. t" => "CONST setprod (%x. t) {x. P}" + "\x|P. t" => "CONST setprod (%x. t) {x. P}" + + +lemma setprod_empty [simp]: "setprod f {} = 1" +by (auto simp add: setprod_def) + +lemma setprod_insert [simp]: "[| finite A; a \ A |] ==> + setprod f (insert a A) = f a * setprod f A" +by (simp add: setprod_def) + +lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1" +by (simp add: setprod_def) + +lemma setprod_reindex: + "inj_on f B ==> setprod h (f ` B) = setprod (h \ f) B" +by(auto simp: setprod_def fold_image_reindex dest!:finite_imageD) + +lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" +by (auto simp add: setprod_reindex) + +lemma setprod_cong: + "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" +by(fastsimp simp: setprod_def intro: fold_image_cong) + +lemma strong_setprod_cong[cong]: + "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" +by(fastsimp simp: simp_implies_def setprod_def intro: fold_image_cong) + +lemma setprod_reindex_cong: "inj_on f A ==> + B = f ` A ==> g = h \ f ==> setprod h B = setprod g A" +by (frule setprod_reindex, simp) + +lemma strong_setprod_reindex_cong: assumes i: "inj_on f A" + and B: "B = f ` A" and eq: "\x. x \ A \ g x = (h \ f) x" + shows "setprod h B = setprod g A" +proof- + have "setprod h B = setprod (h o f) A" + by (simp add: B setprod_reindex[OF i, of h]) + then show ?thesis apply simp + apply (rule setprod_cong) + apply simp + by (simp add: eq) +qed + +lemma setprod_Un_one: + assumes fS: "finite S" and fT: "finite T" + and I0: "\x \ S\T. f x = 1" + shows "setprod f (S \ T) = setprod f S * setprod f T" + using fS fT + apply (simp add: setprod_def) + apply (rule fold_image_Un_one) + using I0 by auto + + +lemma setprod_1: "setprod (%i. 1) A = 1" +apply (case_tac "finite A") +apply (erule finite_induct, auto simp add: mult_ac) +done + +lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" +apply (subgoal_tac "setprod f F = setprod (%x. 1) F") +apply (erule ssubst, rule setprod_1) +apply (rule setprod_cong, auto) +done + +lemma setprod_Un_Int: "finite A ==> finite B + ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" +by(simp add: setprod_def fold_image_Un_Int[symmetric]) + +lemma setprod_Un_disjoint: "finite A ==> finite B + ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B" +by (subst setprod_Un_Int [symmetric], auto) + +lemma setprod_mono_one_left: + assumes fT: "finite T" and ST: "S \ T" + and z: "\i \ T - S. f i = 1" + shows "setprod f S = setprod f T" +proof- + have eq: "T = S \ (T - S)" using ST by blast + have d: "S \ (T - S) = {}" using ST by blast + from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) + show ?thesis + by (simp add: setprod_Un_disjoint[OF f d, unfolded eq[symmetric]] setprod_1'[OF z]) +qed + +lemmas setprod_mono_one_right = setprod_mono_one_left [THEN sym] + +lemma setprod_delta: + assumes fS: "finite S" + shows "setprod (\k. if k=a then b k else 1) S = (if a \ S then b a else 1)" +proof- + let ?f = "(\k. if k=a then b k else 1)" + {assume a: "a \ S" + hence "\ k\ S. ?f k = 1" by simp + hence ?thesis using a by (simp add: setprod_1 cong add: setprod_cong) } + moreover + {assume a: "a \ S" + let ?A = "S - {a}" + let ?B = "{a}" + have eq: "S = ?A \ ?B" using a by blast + have dj: "?A \ ?B = {}" by simp + from fS have fAB: "finite ?A" "finite ?B" by auto + have fA1: "setprod ?f ?A = 1" apply (rule setprod_1') by auto + have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" + using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] + by simp + then have ?thesis using a by (simp add: fA1 cong add: setprod_cong cong del: if_weak_cong)} + ultimately show ?thesis by blast +qed + +lemma setprod_delta': + assumes fS: "finite S" shows + "setprod (\k. if a = k then b k else 1) S = + (if a\ S then b a else 1)" + using setprod_delta[OF fS, of a b, symmetric] + by (auto intro: setprod_cong) + + +lemma setprod_UN_disjoint: + "finite I ==> (ALL i:I. finite (A i)) ==> + (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) ==> + setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" +by(simp add: setprod_def fold_image_UN_disjoint cong: setprod_cong) + +lemma setprod_Union_disjoint: + "[| (ALL A:C. finite A); + (ALL A:C. ALL B:C. A \ B --> A Int B = {}) |] + ==> setprod f (Union C) = setprod (setprod f) C" +apply (cases "finite C") + prefer 2 apply (force dest: finite_UnionD simp add: setprod_def) + apply (frule setprod_UN_disjoint [of C id f]) + apply (unfold Union_def id_def, assumption+) +done + +lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> + (\x\A. (\y\ B x. f x y)) = + (\(x,y)\(SIGMA x:A. B x). f x y)" +by(simp add:setprod_def fold_image_Sigma split_def cong:setprod_cong) + +text{*Here we can eliminate the finiteness assumptions, by cases.*} +lemma setprod_cartesian_product: + "(\x\A. (\y\ B. f x y)) = (\(x,y)\(A <*> B). f x y)" +apply (cases "finite A") + apply (cases "finite B") + apply (simp add: setprod_Sigma) + apply (cases "A={}", simp) + apply (simp add: setprod_1) +apply (auto simp add: setprod_def + dest: finite_cartesian_productD1 finite_cartesian_productD2) +done + +lemma setprod_timesf: + "setprod (%x. f x * g x) A = (setprod f A * setprod g A)" +by(simp add:setprod_def fold_image_distrib) + + +subsubsection {* Properties in more restricted classes of structures *} + +lemma setprod_eq_1_iff [simp]: + "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" +by (induct set: finite) auto + +lemma setprod_zero: + "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0" +apply (induct set: finite, force, clarsimp) +apply (erule disjE, auto) +done + +lemma setprod_nonneg [rule_format]: + "(ALL x: A. (0::'a::linordered_semidom) \ f x) --> 0 \ setprod f A" +by (cases "finite A", induct set: finite, simp_all add: mult_nonneg_nonneg) + +lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x) + --> 0 < setprod f A" +by (cases "finite A", induct set: finite, simp_all add: mult_pos_pos) + +lemma setprod_zero_iff[simp]: "finite A ==> + (setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) = + (EX x: A. f x = 0)" +by (erule finite_induct, auto simp:no_zero_divisors) + +lemma setprod_pos_nat: + "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0" +using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) + +lemma setprod_pos_nat_iff[simp]: + "finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))" +using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) + +lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \ 0) ==> + (setprod f (A Un B) :: 'a ::{field}) + = setprod f A * setprod f B / setprod f (A Int B)" +by (subst setprod_Un_Int [symmetric], auto) + +lemma setprod_diff1: "finite A ==> f a \ 0 ==> + (setprod f (A - {a}) :: 'a :: {field}) = + (if a:A then setprod f A / f a else setprod f A)" +by (erule finite_induct) (auto simp add: insert_Diff_if) + +lemma setprod_inversef: + fixes f :: "'b \ 'a::{field,division_by_zero}" + shows "finite A ==> setprod (inverse \ f) A = inverse (setprod f A)" +by (erule finite_induct) auto + +lemma setprod_dividef: + fixes f :: "'b \ 'a::{field,division_by_zero}" + shows "finite A + ==> setprod (%x. f x / g x) A = setprod f A / setprod g A" +apply (subgoal_tac + "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \ g) x) A") +apply (erule ssubst) +apply (subst divide_inverse) +apply (subst setprod_timesf) +apply (subst setprod_inversef, assumption+, rule refl) +apply (rule setprod_cong, rule refl) +apply (subst divide_inverse, auto) +done + +lemma setprod_dvd_setprod [rule_format]: + "(ALL x : A. f x dvd g x) \ setprod f A dvd setprod g A" + apply (cases "finite A") + apply (induct set: finite) + apply (auto simp add: dvd_def) + apply (rule_tac x = "k * ka" in exI) + apply (simp add: algebra_simps) +done + +lemma setprod_dvd_setprod_subset: + "finite B \ A <= B \ setprod f A dvd setprod f B" + apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)") + apply (unfold dvd_def, blast) + apply (subst setprod_Un_disjoint [symmetric]) + apply (auto elim: finite_subset intro: setprod_cong) +done + +lemma setprod_dvd_setprod_subset2: + "finite B \ A <= B \ ALL x : A. (f x::'a::comm_semiring_1) dvd g x \ + setprod f A dvd setprod g B" + apply (rule dvd_trans) + apply (rule setprod_dvd_setprod, erule (1) bspec) + apply (erule (1) setprod_dvd_setprod_subset) +done + +lemma dvd_setprod: "finite A \ i:A \ + (f i ::'a::comm_semiring_1) dvd setprod f A" +by (induct set: finite) (auto intro: dvd_mult) + +lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \ + (d::'a::comm_semiring_1) dvd (SUM x : A. f x)" + apply (cases "finite A") + apply (induct set: finite) + apply auto +done + +lemma setprod_mono: + fixes f :: "'a \ 'b\linordered_semidom" + assumes "\i\A. 0 \ f i \ f i \ g i" + shows "setprod f A \ setprod g A" +proof (cases "finite A") + case True + hence ?thesis "setprod f A \ 0" using subset_refl[of A] + proof (induct A rule: finite_subset_induct) + case (insert a F) + thus "setprod f (insert a F) \ setprod g (insert a F)" "0 \ setprod f (insert a F)" + unfolding setprod_insert[OF insert(1,3)] + using assms[rule_format,OF insert(2)] insert + by (auto intro: mult_mono mult_nonneg_nonneg) + qed auto + thus ?thesis by simp +qed auto + +lemma abs_setprod: + fixes f :: "'a \ 'b\{linordered_field,abs}" + shows "abs (setprod f A) = setprod (\x. abs (f x)) A" +proof (cases "finite A") + case True thus ?thesis + by induct (auto simp add: field_simps abs_mult) +qed auto + + +subsection {* Finite cardinality *} + +text {* This definition, although traditional, is ugly to work with: +@{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}. +But now that we have @{text setsum} things are easy: +*} + +definition card :: "'a set \ nat" where + "card A = setsum (\x. 1) A" + +lemmas card_eq_setsum = card_def + +lemma card_empty [simp]: "card {} = 0" + by (simp add: card_def) + +lemma card_insert_disjoint [simp]: + "finite A ==> x \ A ==> card (insert x A) = Suc(card A)" + by (simp add: card_def) + +lemma card_insert_if: + "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))" + by (simp add: insert_absorb) + +lemma card_infinite [simp]: "~ finite A ==> card A = 0" + by (simp add: card_def) + +lemma card_ge_0_finite: + "card A > 0 \ finite A" + by (rule ccontr) simp + +lemma card_0_eq [simp,noatp]: "finite A ==> (card A = 0) = (A = {})" + apply auto + apply (drule_tac a = x in mk_disjoint_insert, clarify, auto) + done + +lemma finite_UNIV_card_ge_0: + "finite (UNIV :: 'a set) \ card (UNIV :: 'a set) > 0" + by (rule ccontr) simp + +lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)" + by auto + +lemma card_gt_0_iff: "(0 < card A) = (A \ {} & finite A)" + by (simp add: neq0_conv [symmetric] card_eq_0_iff) + +lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A" +apply(rule_tac t = A in insert_Diff [THEN subst], assumption) +apply(simp del:insert_Diff_single) +done + +lemma card_Diff_singleton: + "finite A ==> x: A ==> card (A - {x}) = card A - 1" +by (simp add: card_Suc_Diff1 [symmetric]) + +lemma card_Diff_singleton_if: + "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)" +by (simp add: card_Diff_singleton) + +lemma card_Diff_insert[simp]: +assumes "finite A" and "a:A" and "a ~: B" +shows "card(A - insert a B) = card(A - B) - 1" +proof - + have "A - insert a B = (A - B) - {a}" using assms by blast + then show ?thesis using assms by(simp add:card_Diff_singleton) +qed + +lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))" +by (simp add: card_insert_if card_Suc_Diff1 del:card_Diff_insert) + +lemma card_insert_le: "finite A ==> card A <= card (insert x A)" +by (simp add: card_insert_if) + +lemma card_mono: "\ finite B; A \ B \ \ card A \ card B" +by (simp add: card_def setsum_mono2) + +lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" +apply (induct set: finite, simp, clarify) +apply (subgoal_tac "finite A & A - {x} <= F") + prefer 2 apply (blast intro: finite_subset, atomize) +apply (drule_tac x = "A - {x}" in spec) +apply (simp add: card_Diff_singleton_if split add: split_if_asm) +apply (case_tac "card A", auto) +done + +lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" +apply (simp add: psubset_eq linorder_not_le [symmetric]) +apply (blast dest: card_seteq) +done + +lemma card_Un_Int: "finite A ==> finite B + ==> card A + card B = card (A Un B) + card (A Int B)" +by(simp add:card_def setsum_Un_Int) + +lemma card_Un_disjoint: "finite A ==> finite B + ==> A Int B = {} ==> card (A Un B) = card A + card B" +by (simp add: card_Un_Int) + +lemma card_Diff_subset: + "finite B ==> B <= A ==> card (A - B) = card A - card B" +by(simp add:card_def setsum_diff_nat) + +lemma card_Diff_subset_Int: + assumes AB: "finite (A \ B)" shows "card (A - B) = card A - card (A \ B)" +proof - + have "A - B = A - A \ B" by auto + thus ?thesis + by (simp add: card_Diff_subset AB) +qed + +lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A" +apply (rule Suc_less_SucD) +apply (simp add: card_Suc_Diff1 del:card_Diff_insert) +done + +lemma card_Diff2_less: + "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A" +apply (case_tac "x = y") + apply (simp add: card_Diff1_less del:card_Diff_insert) +apply (rule less_trans) + prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert) +done + +lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A" +apply (case_tac "x : A") + apply (simp_all add: card_Diff1_less less_imp_le) +done + +lemma card_psubset: "finite B ==> A \ B ==> card A < card B ==> A < B" +by (erule psubsetI, blast) + +lemma insert_partition: + "\ x \ F; \c1 \ insert x F. \c2 \ insert x F. c1 \ c2 \ c1 \ c2 = {} \ + \ x \ \ F = {}" +by auto + +lemma finite_psubset_induct[consumes 1, case_names psubset]: + assumes "finite A" and "!!A. finite A \ (!!B. finite B \ B \ A \ P(B)) \ P(A)" shows "P A" +using assms(1) +proof (induct A rule: measure_induct_rule[where f=card]) + case (less A) + show ?case + proof(rule assms(2)[OF less(2)]) + fix B assume "finite B" "B \ A" + show "P B" by(rule less(1)[OF psubset_card_mono[OF less(2) `B \ A`] `finite B`]) + qed +qed + +text{* main cardinality theorem *} +lemma card_partition [rule_format]: + "finite C ==> + finite (\ C) --> + (\c\C. card c = k) --> + (\c1 \ C. \c2 \ C. c1 \ c2 --> c1 \ c2 = {}) --> + k * card(C) = card (\ C)" +apply (erule finite_induct, simp) +apply (simp add: card_Un_disjoint insert_partition + finite_subset [of _ "\ (insert x F)"]) +done + +lemma card_eq_UNIV_imp_eq_UNIV: + assumes fin: "finite (UNIV :: 'a set)" + and card: "card A = card (UNIV :: 'a set)" + shows "A = (UNIV :: 'a set)" +proof + show "A \ UNIV" by simp + show "UNIV \ A" + proof + fix x + show "x \ A" + proof (rule ccontr) + assume "x \ A" + then have "A \ UNIV" by auto + with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono) + with card show False by simp + qed + qed +qed + +text{*The form of a finite set of given cardinality*} + +lemma card_eq_SucD: +assumes "card A = Suc k" +shows "\b B. A = insert b B & b \ B & card B = k & (k=0 \ B={})" +proof - + have fin: "finite A" using assms by (auto intro: ccontr) + moreover have "card A \ 0" using assms by auto + ultimately obtain b where b: "b \ A" by auto + show ?thesis + proof (intro exI conjI) + show "A = insert b (A-{b})" using b by blast + show "b \ A - {b}" by blast + show "card (A - {b}) = k" and "k = 0 \ A - {b} = {}" + using assms b fin by(fastsimp dest:mk_disjoint_insert)+ + qed +qed + +lemma card_Suc_eq: + "(card A = Suc k) = + (\b B. A = insert b B & b \ B & card B = k & (k=0 \ B={}))" +apply(rule iffI) + apply(erule card_eq_SucD) +apply(auto) +apply(subst card_insert) + apply(auto intro:ccontr) +done + +lemma finite_fun_UNIVD2: + assumes fin: "finite (UNIV :: ('a \ 'b) set)" + shows "finite (UNIV :: 'b set)" +proof - + from fin have "finite (range (\f :: 'a \ 'b. f arbitrary))" + by(rule finite_imageI) + moreover have "UNIV = range (\f :: 'a \ 'b. f arbitrary)" + by(rule UNIV_eq_I) auto + ultimately show "finite (UNIV :: 'b set)" by simp +qed + +lemma setsum_constant [simp]: "(\x \ A. y) = of_nat(card A) * y" +apply (cases "finite A") +apply (erule finite_induct) +apply (auto simp add: algebra_simps) +done + +lemma setprod_constant: "finite A ==> (\x\ A. (y::'a::{comm_monoid_mult})) = y^(card A)" +apply (erule finite_induct) +apply auto +done + +lemma setprod_gen_delta: + assumes fS: "finite S" + shows "setprod (\k. if k=a then b k else c) S = (if a \ S then (b a ::'a::{comm_monoid_mult}) * c^ (card S - 1) else c^ card S)" +proof- + let ?f = "(\k. if k=a then b k else c)" + {assume a: "a \ S" + hence "\ k\ S. ?f k = c" by simp + hence ?thesis using a setprod_constant[OF fS, of c] by (simp add: setprod_1 cong add: setprod_cong) } + moreover + {assume a: "a \ S" + let ?A = "S - {a}" + let ?B = "{a}" + have eq: "S = ?A \ ?B" using a by blast + have dj: "?A \ ?B = {}" by simp + from fS have fAB: "finite ?A" "finite ?B" by auto + have fA0:"setprod ?f ?A = setprod (\i. c) ?A" + apply (rule setprod_cong) by auto + have cA: "card ?A = card S - 1" using fS a by auto + have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto + have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" + using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] + by simp + then have ?thesis using a cA + by (simp add: fA1 ring_simps cong add: setprod_cong cong del: if_weak_cong)} + ultimately show ?thesis by blast +qed + + +lemma setsum_bounded: + assumes le: "\i. i\A \ f i \ (K::'a::{semiring_1, ordered_ab_semigroup_add})" + shows "setsum f A \ of_nat(card A) * K" +proof (cases "finite A") + case True + thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp +next + case False thus ?thesis by (simp add: setsum_def) +qed + + +lemma card_UNIV_unit: "card (UNIV :: unit set) = 1" + unfolding UNIV_unit by simp + + +subsubsection {* Cardinality of unions *} + +lemma card_UN_disjoint: + "finite I ==> (ALL i:I. finite (A i)) ==> + (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) + ==> card (UNION I A) = (\i\I. card(A i))" +apply (simp add: card_def del: setsum_constant) +apply (subgoal_tac + "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") +apply (simp add: setsum_UN_disjoint del: setsum_constant) +apply (simp cong: setsum_cong) +done + +lemma card_Union_disjoint: + "finite C ==> (ALL A:C. finite A) ==> + (ALL A:C. ALL B:C. A \ B --> A Int B = {}) + ==> card (Union C) = setsum card C" +apply (frule card_UN_disjoint [of C id]) +apply (unfold Union_def id_def, assumption+) +done + + +subsubsection {* Cardinality of image *} + +text{*The image of a finite set can be expressed using @{term fold_image}.*} +lemma image_eq_fold_image: + "finite A ==> f ` A = fold_image (op Un) (%x. {f x}) {} A" +proof (induct rule: finite_induct) + case empty then show ?case by simp +next + interpret ab_semigroup_mult "op Un" + proof qed auto + case insert + then show ?case by simp +qed + +lemma card_image_le: "finite A ==> card (f ` A) <= card A" +apply (induct set: finite) + apply simp +apply (simp add: le_SucI card_insert_if) +done + +lemma card_image: "inj_on f A ==> card (f ` A) = card A" +by(simp add:card_def setsum_reindex o_def del:setsum_constant) + +lemma bij_betw_same_card: "bij_betw f A B \ card A = card B" +by(auto simp: card_image bij_betw_def) + +lemma endo_inj_surj: "finite A ==> f ` A \ A ==> inj_on f A ==> f ` A = A" +by (simp add: card_seteq card_image) + +lemma eq_card_imp_inj_on: + "[| finite A; card(f ` A) = card A |] ==> inj_on f A" +apply (induct rule:finite_induct) +apply simp +apply(frule card_image_le[where f = f]) +apply(simp add:card_insert_if split:if_splits) +done + +lemma inj_on_iff_eq_card: + "finite A ==> inj_on f A = (card(f ` A) = card A)" +by(blast intro: card_image eq_card_imp_inj_on) + + +lemma card_inj_on_le: + "[|inj_on f A; f ` A \ B; finite B |] ==> card A \ card B" +apply (subgoal_tac "finite A") + apply (force intro: card_mono simp add: card_image [symmetric]) +apply (blast intro: finite_imageD dest: finite_subset) +done + +lemma card_bij_eq: + "[|inj_on f A; f ` A \ B; inj_on g B; g ` B \ A; + finite A; finite B |] ==> card A = card B" +by (auto intro: le_antisym card_inj_on_le) + + +subsubsection {* Cardinality of products *} + +(* +lemma SigmaI_insert: "y \ A ==> + (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \ (SIGMA x: A. B x))" + by auto +*) + +lemma card_SigmaI [simp]: + "\ finite A; ALL a:A. finite (B a) \ + \ card (SIGMA x: A. B x) = (\a\A. card (B a))" +by(simp add:card_def setsum_Sigma del:setsum_constant) + +lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" +apply (cases "finite A") +apply (cases "finite B") +apply (auto simp add: card_eq_0_iff + dest: finite_cartesian_productD1 finite_cartesian_productD2) +done + +lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)" +by (simp add: card_cartesian_product) + + +subsubsection {* Cardinality of sums *} + +lemma card_Plus: + assumes "finite A" and "finite B" + shows "card (A <+> B) = card A + card B" +proof - + have "Inl`A \ Inr`B = {}" by fast + with assms show ?thesis + unfolding Plus_def + by (simp add: card_Un_disjoint card_image) +qed + +lemma card_Plus_conv_if: + "card (A <+> B) = (if finite A \ finite B then card(A) + card(B) else 0)" +by(auto simp: card_def setsum_Plus simp del: setsum_constant) + + +subsubsection {* Cardinality of the Powerset *} + +lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) +apply (induct set: finite) + apply (simp_all add: Pow_insert) +apply (subst card_Un_disjoint, blast) + apply (blast intro: finite_imageI, blast) +apply (subgoal_tac "inj_on (insert x) (Pow F)") + apply (simp add: card_image Pow_insert) +apply (unfold inj_on_def) +apply (blast elim!: equalityE) +done + +text {* Relates to equivalence classes. Based on a theorem of F. Kammüller. *} + +lemma dvd_partition: + "finite (Union C) ==> + ALL c : C. k dvd card c ==> + (ALL c1: C. ALL c2: C. c1 \ c2 --> c1 Int c2 = {}) ==> + k dvd card (Union C)" +apply(frule finite_UnionD) +apply(rotate_tac -1) +apply (induct set: finite, simp_all, clarify) +apply (subst card_Un_disjoint) + apply (auto simp add: disjoint_eq_subset_Compl) +done + + +subsubsection {* Relating injectivity and surjectivity *} + +lemma finite_surj_inj: "finite(A) \ A <= f`A \ inj_on f A" +apply(rule eq_card_imp_inj_on, assumption) +apply(frule finite_imageI) +apply(drule (1) card_seteq) + apply(erule card_image_le) +apply simp +done + +lemma finite_UNIV_surj_inj: fixes f :: "'a \ 'a" +shows "finite(UNIV:: 'a set) \ surj f \ inj f" +by (blast intro: finite_surj_inj subset_UNIV dest:surj_range) + +lemma finite_UNIV_inj_surj: fixes f :: "'a \ 'a" +shows "finite(UNIV:: 'a set) \ inj f \ surj f" +by(fastsimp simp:surj_def dest!: endo_inj_surj) + +corollary infinite_UNIV_nat[iff]: "~finite(UNIV::nat set)" +proof + assume "finite(UNIV::nat set)" + with finite_UNIV_inj_surj[of Suc] + show False by simp (blast dest: Suc_neq_Zero surjD) +qed + +(* Often leads to bogus ATP proofs because of reduced type information, hence noatp *) +lemma infinite_UNIV_char_0[noatp]: + "\ finite (UNIV::'a::semiring_char_0 set)" +proof + assume "finite (UNIV::'a set)" + with subset_UNIV have "finite (range of_nat::'a set)" + by (rule finite_subset) + moreover have "inj (of_nat::nat \ 'a)" + by (simp add: inj_on_def) + ultimately have "finite (UNIV::nat set)" + by (rule finite_imageD) + then show "False" + by simp +qed + +subsubsection {* Fold1 in lattices with @{const inf} and @{const sup} *} + +text{* + As an application of @{text fold1} we define infimum + and supremum in (not necessarily complete!) lattices + over (non-empty) sets by means of @{text fold1}. +*} + +context semilattice_inf +begin + +lemma below_fold1_iff: + assumes "finite A" "A \ {}" + shows "x \ fold1 inf A \ (\a\A. x \ a)" +proof - + interpret ab_semigroup_idem_mult inf + by (rule ab_semigroup_idem_mult_inf) + show ?thesis using assms by (induct rule: finite_ne_induct) simp_all +qed + +lemma fold1_belowI: + assumes "finite A" + and "a \ A" + shows "fold1 inf A \ a" +proof - + from assms have "A \ {}" by auto + from `finite A` `A \ {}` `a \ A` show ?thesis + proof (induct rule: finite_ne_induct) + case singleton thus ?case by simp + next + interpret ab_semigroup_idem_mult inf + by (rule ab_semigroup_idem_mult_inf) + case (insert x F) + from insert(5) have "a = x \ a \ F" by simp + thus ?case + proof + assume "a = x" thus ?thesis using insert + by (simp add: mult_ac) + next + assume "a \ F" + hence bel: "fold1 inf F \ a" by (rule insert) + have "inf (fold1 inf (insert x F)) a = inf x (inf (fold1 inf F) a)" + using insert by (simp add: mult_ac) + also have "inf (fold1 inf F) a = fold1 inf F" + using bel by (auto intro: antisym) + also have "inf x \ = fold1 inf (insert x F)" + using insert by (simp add: mult_ac) + finally have aux: "inf (fold1 inf (insert x F)) a = fold1 inf (insert x F)" . + moreover have "inf (fold1 inf (insert x F)) a \ a" by simp + ultimately show ?thesis by simp + qed + qed +qed + +end + +context lattice +begin + +definition + Inf_fin :: "'a set \ 'a" ("\\<^bsub>fin\<^esub>_" [900] 900) +where + "Inf_fin = fold1 inf" + +definition + Sup_fin :: "'a set \ 'a" ("\\<^bsub>fin\<^esub>_" [900] 900) +where + "Sup_fin = fold1 sup" + +lemma Inf_le_Sup [simp]: "\ finite A; A \ {} \ \ \\<^bsub>fin\<^esub>A \ \\<^bsub>fin\<^esub>A" +apply(unfold Sup_fin_def Inf_fin_def) +apply(subgoal_tac "EX a. a:A") +prefer 2 apply blast +apply(erule exE) +apply(rule order_trans) +apply(erule (1) fold1_belowI) +apply(erule (1) semilattice_inf.fold1_belowI [OF dual_semilattice]) +done + +lemma sup_Inf_absorb [simp]: + "finite A \ a \ A \ sup a (\\<^bsub>fin\<^esub>A) = a" +apply(subst sup_commute) +apply(simp add: Inf_fin_def sup_absorb2 fold1_belowI) +done + +lemma inf_Sup_absorb [simp]: + "finite A \ a \ A \ inf a (\\<^bsub>fin\<^esub>A) = a" +by (simp add: Sup_fin_def inf_absorb1 + semilattice_inf.fold1_belowI [OF dual_semilattice]) + +end + +context distrib_lattice +begin + +lemma sup_Inf1_distrib: + assumes "finite A" + and "A \ {}" + shows "sup x (\\<^bsub>fin\<^esub>A) = \\<^bsub>fin\<^esub>{sup x a|a. a \ A}" +proof - + interpret ab_semigroup_idem_mult inf + by (rule ab_semigroup_idem_mult_inf) + from assms show ?thesis + by (simp add: Inf_fin_def image_def + hom_fold1_commute [where h="sup x", OF sup_inf_distrib1]) + (rule arg_cong [where f="fold1 inf"], blast) +qed + +lemma sup_Inf2_distrib: + assumes A: "finite A" "A \ {}" and B: "finite B" "B \ {}" + shows "sup (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B) = \\<^bsub>fin\<^esub>{sup a b|a b. a \ A \ b \ B}" +using A proof (induct rule: finite_ne_induct) + case singleton thus ?case + by (simp add: sup_Inf1_distrib [OF B] fold1_singleton_def [OF Inf_fin_def]) +next + interpret ab_semigroup_idem_mult inf + by (rule ab_semigroup_idem_mult_inf) + case (insert x A) + have finB: "finite {sup x b |b. b \ B}" + by(rule finite_surj[where f = "sup x", OF B(1)], auto) + have finAB: "finite {sup a b |a b. a \ A \ b \ B}" + proof - + have "{sup a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {sup a b})" + by blast + thus ?thesis by(simp add: insert(1) B(1)) + qed + have ne: "{sup a b |a b. a \ A \ b \ B} \ {}" using insert B by blast + have "sup (\\<^bsub>fin\<^esub>(insert x A)) (\\<^bsub>fin\<^esub>B) = sup (inf x (\\<^bsub>fin\<^esub>A)) (\\<^bsub>fin\<^esub>B)" + using insert by (simp add: fold1_insert_idem_def [OF Inf_fin_def]) + also have "\ = inf (sup x (\\<^bsub>fin\<^esub>B)) (sup (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B))" by(rule sup_inf_distrib2) + also have "\ = inf (\\<^bsub>fin\<^esub>{sup x b|b. b \ B}) (\\<^bsub>fin\<^esub>{sup a b|a b. a \ A \ b \ B})" + using insert by(simp add:sup_Inf1_distrib[OF B]) + also have "\ = \\<^bsub>fin\<^esub>({sup x b |b. b \ B} \ {sup a b |a b. a \ A \ b \ B})" + (is "_ = \\<^bsub>fin\<^esub>?M") + using B insert + by (simp add: Inf_fin_def fold1_Un2 [OF finB _ finAB ne]) + also have "?M = {sup a b |a b. a \ insert x A \ b \ B}" + by blast + finally show ?case . +qed + +lemma inf_Sup1_distrib: + assumes "finite A" and "A \ {}" + shows "inf x (\\<^bsub>fin\<^esub>A) = \\<^bsub>fin\<^esub>{inf x a|a. a \ A}" +proof - + interpret ab_semigroup_idem_mult sup + by (rule ab_semigroup_idem_mult_sup) + from assms show ?thesis + by (simp add: Sup_fin_def image_def hom_fold1_commute [where h="inf x", OF inf_sup_distrib1]) + (rule arg_cong [where f="fold1 sup"], blast) +qed + +lemma inf_Sup2_distrib: + assumes A: "finite A" "A \ {}" and B: "finite B" "B \ {}" + shows "inf (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B) = \\<^bsub>fin\<^esub>{inf a b|a b. a \ A \ b \ B}" +using A proof (induct rule: finite_ne_induct) + case singleton thus ?case + by(simp add: inf_Sup1_distrib [OF B] fold1_singleton_def [OF Sup_fin_def]) +next + case (insert x A) + have finB: "finite {inf x b |b. b \ B}" + by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto) + have finAB: "finite {inf a b |a b. a \ A \ b \ B}" + proof - + have "{inf a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {inf a b})" + by blast + thus ?thesis by(simp add: insert(1) B(1)) + qed + have ne: "{inf a b |a b. a \ A \ b \ B} \ {}" using insert B by blast + interpret ab_semigroup_idem_mult sup + by (rule ab_semigroup_idem_mult_sup) + have "inf (\\<^bsub>fin\<^esub>(insert x A)) (\\<^bsub>fin\<^esub>B) = inf (sup x (\\<^bsub>fin\<^esub>A)) (\\<^bsub>fin\<^esub>B)" + using insert by (simp add: fold1_insert_idem_def [OF Sup_fin_def]) + also have "\ = sup (inf x (\\<^bsub>fin\<^esub>B)) (inf (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B))" by(rule inf_sup_distrib2) + also have "\ = sup (\\<^bsub>fin\<^esub>{inf x b|b. b \ B}) (\\<^bsub>fin\<^esub>{inf a b|a b. a \ A \ b \ B})" + using insert by(simp add:inf_Sup1_distrib[OF B]) + also have "\ = \\<^bsub>fin\<^esub>({inf x b |b. b \ B} \ {inf a b |a b. a \ A \ b \ B})" + (is "_ = \\<^bsub>fin\<^esub>?M") + using B insert + by (simp add: Sup_fin_def fold1_Un2 [OF finB _ finAB ne]) + also have "?M = {inf a b |a b. a \ insert x A \ b \ B}" + by blast + finally show ?case . +qed + +end + +context complete_lattice +begin + +lemma Inf_fin_Inf: + assumes "finite A" and "A \ {}" + shows "\\<^bsub>fin\<^esub>A = Inf A" +proof - + interpret ab_semigroup_idem_mult inf + by (rule ab_semigroup_idem_mult_inf) + from `A \ {}` obtain b B where "A = insert b B" by auto + moreover with `finite A` have "finite B" by simp + ultimately show ?thesis + by (simp add: Inf_fin_def fold1_eq_fold_idem inf_Inf_fold_inf [symmetric]) + (simp add: Inf_fold_inf) +qed + +lemma Sup_fin_Sup: + assumes "finite A" and "A \ {}" + shows "\\<^bsub>fin\<^esub>A = Sup A" +proof - + interpret ab_semigroup_idem_mult sup + by (rule ab_semigroup_idem_mult_sup) + from `A \ {}` obtain b B where "A = insert b B" by auto + moreover with `finite A` have "finite B" by simp + ultimately show ?thesis + by (simp add: Sup_fin_def fold1_eq_fold_idem sup_Sup_fold_sup [symmetric]) + (simp add: Sup_fold_sup) +qed + +end + + +subsubsection {* Fold1 in linear orders with @{const min} and @{const max} *} + +text{* + As an application of @{text fold1} we define minimum + and maximum in (not necessarily complete!) linear orders + over (non-empty) sets by means of @{text fold1}. +*} + +context linorder +begin + +lemma ab_semigroup_idem_mult_min: + "ab_semigroup_idem_mult min" + proof qed (auto simp add: min_def) + +lemma ab_semigroup_idem_mult_max: + "ab_semigroup_idem_mult max" + proof qed (auto simp add: max_def) + +lemma max_lattice: + "semilattice_inf (op \) (op >) max" + by (fact min_max.dual_semilattice) + +lemma dual_max: + "ord.max (op \) = min" + by (auto simp add: ord.max_def_raw min_def expand_fun_eq) + +lemma dual_min: + "ord.min (op \) = max" + by (auto simp add: ord.min_def_raw max_def expand_fun_eq) + +lemma strict_below_fold1_iff: + assumes "finite A" and "A \ {}" + shows "x < fold1 min A \ (\a\A. x < a)" +proof - + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + from assms show ?thesis + by (induct rule: finite_ne_induct) + (simp_all add: fold1_insert) +qed + +lemma fold1_below_iff: + assumes "finite A" and "A \ {}" + shows "fold1 min A \ x \ (\a\A. a \ x)" +proof - + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + from assms show ?thesis + by (induct rule: finite_ne_induct) + (simp_all add: fold1_insert min_le_iff_disj) +qed + +lemma fold1_strict_below_iff: + assumes "finite A" and "A \ {}" + shows "fold1 min A < x \ (\a\A. a < x)" +proof - + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + from assms show ?thesis + by (induct rule: finite_ne_induct) + (simp_all add: fold1_insert min_less_iff_disj) +qed + +lemma fold1_antimono: + assumes "A \ {}" and "A \ B" and "finite B" + shows "fold1 min B \ fold1 min A" +proof cases + assume "A = B" thus ?thesis by simp +next + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + assume "A \ B" + have B: "B = A \ (B-A)" using `A \ B` by blast + have "fold1 min B = fold1 min (A \ (B-A))" by(subst B)(rule refl) + also have "\ = min (fold1 min A) (fold1 min (B-A))" + proof - + have "finite A" by(rule finite_subset[OF `A \ B` `finite B`]) + moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *) + moreover have "(B-A) \ {}" using prems by blast + moreover have "A Int (B-A) = {}" using prems by blast + ultimately show ?thesis using `A \ {}` by (rule_tac fold1_Un) + qed + also have "\ \ fold1 min A" by (simp add: min_le_iff_disj) + finally show ?thesis . +qed + +definition + Min :: "'a set \ 'a" +where + "Min = fold1 min" + +definition + Max :: "'a set \ 'a" +where + "Max = fold1 max" + +lemmas Min_singleton [simp] = fold1_singleton_def [OF Min_def] +lemmas Max_singleton [simp] = fold1_singleton_def [OF Max_def] + +lemma Min_insert [simp]: + assumes "finite A" and "A \ {}" + shows "Min (insert x A) = min x (Min A)" +proof - + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + from assms show ?thesis by (rule fold1_insert_idem_def [OF Min_def]) +qed + +lemma Max_insert [simp]: + assumes "finite A" and "A \ {}" + shows "Max (insert x A) = max x (Max A)" +proof - + interpret ab_semigroup_idem_mult max + by (rule ab_semigroup_idem_mult_max) + from assms show ?thesis by (rule fold1_insert_idem_def [OF Max_def]) +qed + +lemma Min_in [simp]: + assumes "finite A" and "A \ {}" + shows "Min A \ A" +proof - + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + from assms fold1_in show ?thesis by (fastsimp simp: Min_def min_def) +qed + +lemma Max_in [simp]: + assumes "finite A" and "A \ {}" + shows "Max A \ A" +proof - + interpret ab_semigroup_idem_mult max + by (rule ab_semigroup_idem_mult_max) + from assms fold1_in [of A] show ?thesis by (fastsimp simp: Max_def max_def) +qed + +lemma Min_Un: + assumes "finite A" and "A \ {}" and "finite B" and "B \ {}" + shows "Min (A \ B) = min (Min A) (Min B)" +proof - + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + from assms show ?thesis + by (simp add: Min_def fold1_Un2) +qed + +lemma Max_Un: + assumes "finite A" and "A \ {}" and "finite B" and "B \ {}" + shows "Max (A \ B) = max (Max A) (Max B)" +proof - + interpret ab_semigroup_idem_mult max + by (rule ab_semigroup_idem_mult_max) + from assms show ?thesis + by (simp add: Max_def fold1_Un2) +qed + +lemma hom_Min_commute: + assumes "\x y. h (min x y) = min (h x) (h y)" + and "finite N" and "N \ {}" + shows "h (Min N) = Min (h ` N)" +proof - + interpret ab_semigroup_idem_mult min + by (rule ab_semigroup_idem_mult_min) + from assms show ?thesis + by (simp add: Min_def hom_fold1_commute) +qed + +lemma hom_Max_commute: + assumes "\x y. h (max x y) = max (h x) (h y)" + and "finite N" and "N \ {}" + shows "h (Max N) = Max (h ` N)" +proof - + interpret ab_semigroup_idem_mult max + by (rule ab_semigroup_idem_mult_max) + from assms show ?thesis + by (simp add: Max_def hom_fold1_commute [of h]) +qed + +lemma Min_le [simp]: + assumes "finite A" and "x \ A" + shows "Min A \ x" + using assms by (simp add: Min_def min_max.fold1_belowI) + +lemma Max_ge [simp]: + assumes "finite A" and "x \ A" + shows "x \ Max A" +proof - + interpret semilattice_inf "op \" "op >" max + by (rule max_lattice) + from assms show ?thesis by (simp add: Max_def fold1_belowI) +qed + +lemma Min_ge_iff [simp, noatp]: + assumes "finite A" and "A \ {}" + shows "x \ Min A \ (\a\A. x \ a)" + using assms by (simp add: Min_def min_max.below_fold1_iff) + +lemma Max_le_iff [simp, noatp]: + assumes "finite A" and "A \ {}" + shows "Max A \ x \ (\a\A. a \ x)" +proof - + interpret semilattice_inf "op \" "op >" max + by (rule max_lattice) + from assms show ?thesis by (simp add: Max_def below_fold1_iff) +qed + +lemma Min_gr_iff [simp, noatp]: + assumes "finite A" and "A \ {}" + shows "x < Min A \ (\a\A. x < a)" + using assms by (simp add: Min_def strict_below_fold1_iff) + +lemma Max_less_iff [simp, noatp]: + assumes "finite A" and "A \ {}" + shows "Max A < x \ (\a\A. a < x)" +proof - + interpret dual: linorder "op \" "op >" + by (rule dual_linorder) + from assms show ?thesis + by (simp add: Max_def dual.strict_below_fold1_iff [folded dual.dual_max]) +qed + +lemma Min_le_iff [noatp]: + assumes "finite A" and "A \ {}" + shows "Min A \ x \ (\a\A. a \ x)" + using assms by (simp add: Min_def fold1_below_iff) + +lemma Max_ge_iff [noatp]: + assumes "finite A" and "A \ {}" + shows "x \ Max A \ (\a\A. x \ a)" +proof - + interpret dual: linorder "op \" "op >" + by (rule dual_linorder) + from assms show ?thesis + by (simp add: Max_def dual.fold1_below_iff [folded dual.dual_max]) +qed + +lemma Min_less_iff [noatp]: + assumes "finite A" and "A \ {}" + shows "Min A < x \ (\a\A. a < x)" + using assms by (simp add: Min_def fold1_strict_below_iff) + +lemma Max_gr_iff [noatp]: + assumes "finite A" and "A \ {}" + shows "x < Max A \ (\a\A. x < a)" +proof - + interpret dual: linorder "op \" "op >" + by (rule dual_linorder) + from assms show ?thesis + by (simp add: Max_def dual.fold1_strict_below_iff [folded dual.dual_max]) +qed + +lemma Min_eqI: + assumes "finite A" + assumes "\y. y \ A \ y \ x" + and "x \ A" + shows "Min A = x" +proof (rule antisym) + from `x \ A` have "A \ {}" by auto + with assms show "Min A \ x" by simp +next + from assms show "x \ Min A" by simp +qed + +lemma Max_eqI: + assumes "finite A" + assumes "\y. y \ A \ y \ x" + and "x \ A" + shows "Max A = x" +proof (rule antisym) + from `x \ A` have "A \ {}" by auto + with assms show "Max A \ x" by simp +next + from assms show "x \ Max A" by simp +qed + +lemma Min_antimono: + assumes "M \ N" and "M \ {}" and "finite N" + shows "Min N \ Min M" + using assms by (simp add: Min_def fold1_antimono) + +lemma Max_mono: + assumes "M \ N" and "M \ {}" and "finite N" + shows "Max M \ Max N" +proof - + interpret dual: linorder "op \" "op >" + by (rule dual_linorder) + from assms show ?thesis + by (simp add: Max_def dual.fold1_antimono [folded dual.dual_max]) +qed + +lemma finite_linorder_max_induct[consumes 1, case_names empty insert]: + "finite A \ P {} \ + (!!b A. finite A \ ALL a:A. a < b \ P A \ P(insert b A)) + \ P A" +proof (induct rule: finite_psubset_induct) + fix A :: "'a set" + assume IH: "!! B. finite B \ B < A \ P {} \ + (!!b A. finite A \ (\a\A. a P A \ P (insert b A)) + \ P B" + and "finite A" and "P {}" + and step: "!!b A. \finite A; \a\A. a < b; P A\ \ P (insert b A)" + show "P A" + proof (cases "A = {}") + assume "A = {}" thus "P A" using `P {}` by simp + next + let ?B = "A - {Max A}" let ?A = "insert (Max A) ?B" + assume "A \ {}" + with `finite A` have "Max A : A" by auto + hence A: "?A = A" using insert_Diff_single insert_absorb by auto + moreover have "finite ?B" using `finite A` by simp + ultimately have "P ?B" using `P {}` step IH[of ?B] by blast + moreover have "\a\?B. a < Max A" using Max_ge [OF `finite A`] by fastsimp + ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastsimp + qed +qed + +lemma finite_linorder_min_induct[consumes 1, case_names empty insert]: + "\finite A; P {}; \b A. \finite A; \a\A. b < a; P A\ \ P (insert b A)\ \ P A" +by(rule linorder.finite_linorder_max_induct[OF dual_linorder]) + +end + +context linordered_ab_semigroup_add +begin + +lemma add_Min_commute: + fixes k + assumes "finite N" and "N \ {}" + shows "k + Min N = Min {k + m | m. m \ N}" +proof - + have "\x y. k + min x y = min (k + x) (k + y)" + by (simp add: min_def not_le) + (blast intro: antisym less_imp_le add_left_mono) + with assms show ?thesis + using hom_Min_commute [of "plus k" N] + by simp (blast intro: arg_cong [where f = Min]) +qed + +lemma add_Max_commute: + fixes k + assumes "finite N" and "N \ {}" + shows "k + Max N = Max {k + m | m. m \ N}" +proof - + have "\x y. k + max x y = max (k + x) (k + y)" + by (simp add: max_def not_le) + (blast intro: antisym less_imp_le add_left_mono) + with assms show ?thesis + using hom_Max_commute [of "plus k" N] + by simp (blast intro: arg_cong [where f = Max]) +qed + +end + +context linordered_ab_group_add +begin + +lemma minus_Max_eq_Min [simp]: + "finite S \ S \ {} \ - (Max S) = Min (uminus ` S)" + by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min) + +lemma minus_Min_eq_Max [simp]: + "finite S \ S \ {} \ - (Min S) = Max (uminus ` S)" + by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max) + +end + +end diff -r abf91fba0a70 -r 99b6152aedf5 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Wed Mar 10 08:04:50 2010 +0100 +++ b/src/HOL/Finite_Set.thy Wed Mar 10 16:53:27 2010 +0100 @@ -6,7 +6,7 @@ header {* Finite sets *} theory Finite_Set -imports Power Product_Type Sum_Type +imports Power Option begin subsection {* Definition and basic properties *} @@ -527,17 +527,24 @@ lemma UNIV_unit [noatp]: "UNIV = {()}" by auto -instance unit :: finite - by default (simp add: UNIV_unit) +instance unit :: finite proof +qed (simp add: UNIV_unit) lemma UNIV_bool [noatp]: "UNIV = {False, True}" by auto -instance bool :: finite - by default (simp add: UNIV_bool) +instance bool :: finite proof +qed (simp add: UNIV_bool) + +instance * :: (finite, finite) finite proof +qed (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite) -instance * :: (finite, finite) finite - by default (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite) +lemma finite_option_UNIV [simp]: + "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)" + by (auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some) + +instance option :: (finite) finite proof +qed (simp add: UNIV_option_conv) lemma inj_graph: "inj (%f. {(x, y). y = f x})" by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq) @@ -556,8 +563,8 @@ qed qed -instance "+" :: (finite, finite) finite - by default (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite) +instance "+" :: (finite, finite) finite proof +qed (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite) subsection {* A fold functional for finite sets *} @@ -1053,1470 +1060,6 @@ end -subsection {* Generalized summation over a set *} - -interpretation comm_monoid_add: comm_monoid_mult "op +" "0::'a::comm_monoid_add" - proof qed (auto intro: add_assoc add_commute) - -definition setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add" -where "setsum f A == if finite A then fold_image (op +) f 0 A else 0" - -abbreviation - Setsum ("\_" [1000] 999) where - "\A == setsum (%x. x) A" - -text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is -written @{text"\x\A. e"}. *} - -syntax - "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10) -syntax (xsymbols) - "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\_\_. _)" [0, 51, 10] 10) -syntax (HTML output) - "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\_\_. _)" [0, 51, 10] 10) - -translations -- {* Beware of argument permutation! *} - "SUM i:A. b" == "CONST setsum (%i. b) A" - "\i\A. b" == "CONST setsum (%i. b) A" - -text{* Instead of @{term"\x\{x. P}. e"} we introduce the shorter - @{text"\x|P. e"}. *} - -syntax - "_qsetsum" :: "pttrn \ bool \ 'a \ 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10) -syntax (xsymbols) - "_qsetsum" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) -syntax (HTML output) - "_qsetsum" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) - -translations - "SUM x|P. t" => "CONST setsum (%x. t) {x. P}" - "\x|P. t" => "CONST setsum (%x. t) {x. P}" - -print_translation {* -let - fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] = - if x <> y then raise Match - else - let - val x' = Syntax.mark_bound x; - val t' = subst_bound (x', t); - val P' = subst_bound (x', P); - in Syntax.const @{syntax_const "_qsetsum"} $ Syntax.mark_bound x $ P' $ t' end - | setsum_tr' _ = raise Match; -in [(@{const_syntax setsum}, setsum_tr')] end -*} - - -lemma setsum_empty [simp]: "setsum f {} = 0" -by (simp add: setsum_def) - -lemma setsum_insert [simp]: - "finite F ==> a \ F ==> setsum f (insert a F) = f a + setsum f F" -by (simp add: setsum_def) - -lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0" -by (simp add: setsum_def) - -lemma setsum_reindex: - "inj_on f B ==> setsum h (f ` B) = setsum (h \ f) B" -by(auto simp add: setsum_def comm_monoid_add.fold_image_reindex dest!:finite_imageD) - -lemma setsum_reindex_id: - "inj_on f B ==> setsum f B = setsum id (f ` B)" -by (auto simp add: setsum_reindex) - -lemma setsum_reindex_nonzero: - assumes fS: "finite S" - and nz: "\ x y. x \ S \ y \ S \ x \ y \ f x = f y \ h (f x) = 0" - shows "setsum h (f ` S) = setsum (h o f) S" -using nz -proof(induct rule: finite_induct[OF fS]) - case 1 thus ?case by simp -next - case (2 x F) - {assume fxF: "f x \ f ` F" hence "\y \ F . f y = f x" by auto - then obtain y where y: "y \ F" "f x = f y" by auto - from "2.hyps" y have xy: "x \ y" by auto - - from "2.prems"[of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp - have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto - also have "\ = setsum (h o f) (insert x F)" - unfolding setsum_insert[OF `finite F` `x\F`] - using h0 - apply simp - apply (rule "2.hyps"(3)) - apply (rule_tac y="y" in "2.prems") - apply simp_all - done - finally have ?case .} - moreover - {assume fxF: "f x \ f ` F" - have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)" - using fxF "2.hyps" by simp - also have "\ = setsum (h o f) (insert x F)" - unfolding setsum_insert[OF `finite F` `x\F`] - apply simp - apply (rule cong[OF refl[of "op + (h (f x))"]]) - apply (rule "2.hyps"(3)) - apply (rule_tac y="y" in "2.prems") - apply simp_all - done - finally have ?case .} - ultimately show ?case by blast -qed - -lemma setsum_cong: - "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" -by(fastsimp simp: setsum_def intro: comm_monoid_add.fold_image_cong) - -lemma strong_setsum_cong[cong]: - "A = B ==> (!!x. x:B =simp=> f x = g x) - ==> setsum (%x. f x) A = setsum (%x. g x) B" -by(fastsimp simp: simp_implies_def setsum_def intro: comm_monoid_add.fold_image_cong) - -lemma setsum_cong2: "\\x. x \ A \ f x = g x\ \ setsum f A = setsum g A" -by (rule setsum_cong[OF refl], auto) - -lemma setsum_reindex_cong: - "[|inj_on f A; B = f ` A; !!a. a:A \ g a = h (f a)|] - ==> setsum h B = setsum g A" -by (simp add: setsum_reindex cong: setsum_cong) - - -lemma setsum_0[simp]: "setsum (%i. 0) A = 0" -apply (clarsimp simp: setsum_def) -apply (erule finite_induct, auto) -done - -lemma setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0" -by(simp add:setsum_cong) - -lemma setsum_Un_Int: "finite A ==> finite B ==> - setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" - -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} -by(simp add: setsum_def comm_monoid_add.fold_image_Un_Int [symmetric]) - -lemma setsum_Un_disjoint: "finite A ==> finite B - ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B" -by (subst setsum_Un_Int [symmetric], auto) - -lemma setsum_mono_zero_left: - assumes fT: "finite T" and ST: "S \ T" - and z: "\i \ T - S. f i = 0" - shows "setsum f S = setsum f T" -proof- - have eq: "T = S \ (T - S)" using ST by blast - have d: "S \ (T - S) = {}" using ST by blast - from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) - show ?thesis - by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) -qed - -lemma setsum_mono_zero_right: - "finite T \ S \ T \ \i \ T - S. f i = 0 \ setsum f T = setsum f S" -by(blast intro!: setsum_mono_zero_left[symmetric]) - -lemma setsum_mono_zero_cong_left: - assumes fT: "finite T" and ST: "S \ T" - and z: "\i \ T - S. g i = 0" - and fg: "\x. x \ S \ f x = g x" - shows "setsum f S = setsum g T" -proof- - have eq: "T = S \ (T - S)" using ST by blast - have d: "S \ (T - S) = {}" using ST by blast - from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) - show ?thesis - using fg by (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] setsum_0'[OF z]) -qed - -lemma setsum_mono_zero_cong_right: - assumes fT: "finite T" and ST: "S \ T" - and z: "\i \ T - S. f i = 0" - and fg: "\x. x \ S \ f x = g x" - shows "setsum f T = setsum g S" -using setsum_mono_zero_cong_left[OF fT ST z] fg[symmetric] by auto - -lemma setsum_delta: - assumes fS: "finite S" - shows "setsum (\k. if k=a then b k else 0) S = (if a \ S then b a else 0)" -proof- - let ?f = "(\k. if k=a then b k else 0)" - {assume a: "a \ S" - hence "\ k\ S. ?f k = 0" by simp - hence ?thesis using a by simp} - moreover - {assume a: "a \ S" - let ?A = "S - {a}" - let ?B = "{a}" - have eq: "S = ?A \ ?B" using a by blast - have dj: "?A \ ?B = {}" by simp - from fS have fAB: "finite ?A" "finite ?B" by auto - have "setsum ?f S = setsum ?f ?A + setsum ?f ?B" - using setsum_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] - by simp - then have ?thesis using a by simp} - ultimately show ?thesis by blast -qed -lemma setsum_delta': - assumes fS: "finite S" shows - "setsum (\k. if a = k then b k else 0) S = - (if a\ S then b a else 0)" - using setsum_delta[OF fS, of a b, symmetric] - by (auto intro: setsum_cong) - -lemma setsum_restrict_set: - assumes fA: "finite A" - shows "setsum f (A \ B) = setsum (\x. if x \ B then f x else 0) A" -proof- - from fA have fab: "finite (A \ B)" by auto - have aba: "A \ B \ A" by blast - let ?g = "\x. if x \ A\B then f x else 0" - from setsum_mono_zero_left[OF fA aba, of ?g] - show ?thesis by simp -qed - -lemma setsum_cases: - assumes fA: "finite A" - shows "setsum (\x. if P x then f x else g x) A = - setsum f (A \ {x. P x}) + setsum g (A \ - {x. P x})" -proof- - have a: "A = A \ {x. P x} \ A \ -{x. P x}" - "(A \ {x. P x}) \ (A \ -{x. P x}) = {}" - by blast+ - from fA - have f: "finite (A \ {x. P x})" "finite (A \ -{x. P x})" by auto - let ?g = "\x. if P x then f x else g x" - from setsum_Un_disjoint[OF f a(2), of ?g] a(1) - show ?thesis by simp -qed - - -(*But we can't get rid of finite I. If infinite, although the rhs is 0, - the lhs need not be, since UNION I A could still be finite.*) -lemma setsum_UN_disjoint: - "finite I ==> (ALL i:I. finite (A i)) ==> - (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) ==> - setsum f (UNION I A) = (\i\I. setsum f (A i))" -by(simp add: setsum_def comm_monoid_add.fold_image_UN_disjoint cong: setsum_cong) - -text{*No need to assume that @{term C} is finite. If infinite, the rhs is -directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*} -lemma setsum_Union_disjoint: - "[| (ALL A:C. finite A); - (ALL A:C. ALL B:C. A \ B --> A Int B = {}) |] - ==> setsum f (Union C) = setsum (setsum f) C" -apply (cases "finite C") - prefer 2 apply (force dest: finite_UnionD simp add: setsum_def) - apply (frule setsum_UN_disjoint [of C id f]) - apply (unfold Union_def id_def, assumption+) -done - -(*But we can't get rid of finite A. If infinite, although the lhs is 0, - the rhs need not be, since SIGMA A B could still be finite.*) -lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==> - (\x\A. (\y\B x. f x y)) = (\(x,y)\(SIGMA x:A. B x). f x y)" -by(simp add:setsum_def comm_monoid_add.fold_image_Sigma split_def cong:setsum_cong) - -text{*Here we can eliminate the finiteness assumptions, by cases.*} -lemma setsum_cartesian_product: - "(\x\A. (\y\B. f x y)) = (\(x,y) \ A <*> B. f x y)" -apply (cases "finite A") - apply (cases "finite B") - apply (simp add: setsum_Sigma) - apply (cases "A={}", simp) - apply (simp) -apply (auto simp add: setsum_def - dest: finite_cartesian_productD1 finite_cartesian_productD2) -done - -lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" -by(simp add:setsum_def comm_monoid_add.fold_image_distrib) - - -subsubsection {* Properties in more restricted classes of structures *} - -lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" -apply (case_tac "finite A") - prefer 2 apply (simp add: setsum_def) -apply (erule rev_mp) -apply (erule finite_induct, auto) -done - -lemma setsum_eq_0_iff [simp]: - "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" -by (induct set: finite) auto - -lemma setsum_eq_Suc0_iff: "finite A \ - (setsum f A = Suc 0) = (EX a:A. f a = Suc 0 & (ALL b:A. a\b \ f b = 0))" -apply(erule finite_induct) -apply (auto simp add:add_is_1) -done - -lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]] - -lemma setsum_Un_nat: "finite A ==> finite B ==> - (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" - -- {* For the natural numbers, we have subtraction. *} -by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) - -lemma setsum_Un: "finite A ==> finite B ==> - (setsum f (A Un B) :: 'a :: ab_group_add) = - setsum f A + setsum f B - setsum f (A Int B)" -by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) - -lemma (in comm_monoid_mult) fold_image_1: "finite S \ (\x\S. f x = 1) \ fold_image op * f 1 S = 1" - apply (induct set: finite) - apply simp by auto - -lemma (in comm_monoid_mult) fold_image_Un_one: - assumes fS: "finite S" and fT: "finite T" - and I0: "\x \ S\T. f x = 1" - shows "fold_image (op *) f 1 (S \ T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T" -proof- - have "fold_image op * f 1 (S \ T) = 1" - apply (rule fold_image_1) - using fS fT I0 by auto - with fold_image_Un_Int[OF fS fT] show ?thesis by simp -qed - -lemma setsum_eq_general_reverses: - assumes fS: "finite S" and fT: "finite T" - and kh: "\y. y \ T \ k y \ S \ h (k y) = y" - and hk: "\x. x \ S \ h x \ T \ k (h x) = x \ g (h x) = f x" - shows "setsum f S = setsum g T" - apply (simp add: setsum_def fS fT) - apply (rule comm_monoid_add.fold_image_eq_general_inverses[OF fS]) - apply (erule kh) - apply (erule hk) - done - - - -lemma setsum_Un_zero: - assumes fS: "finite S" and fT: "finite T" - and I0: "\x \ S\T. f x = 0" - shows "setsum f (S \ T) = setsum f S + setsum f T" - using fS fT - apply (simp add: setsum_def) - apply (rule comm_monoid_add.fold_image_Un_one) - using I0 by auto - - -lemma setsum_UNION_zero: - assumes fS: "finite S" and fSS: "\T \ S. finite T" - and f0: "\T1 T2 x. T1\S \ T2\S \ T1 \ T2 \ x \ T1 \ x \ T2 \ f x = 0" - shows "setsum f (\S) = setsum (\T. setsum f T) S" - using fSS f0 -proof(induct rule: finite_induct[OF fS]) - case 1 thus ?case by simp -next - case (2 T F) - then have fTF: "finite T" "\T\F. finite T" "finite F" and TF: "T \ F" - and H: "setsum f (\ F) = setsum (setsum f) F" by auto - from fTF have fUF: "finite (\F)" by auto - from "2.prems" TF fTF - show ?case - by (auto simp add: H[symmetric] intro: setsum_Un_zero[OF fTF(1) fUF, of f]) -qed - - -lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) = - (if a:A then setsum f A - f a else setsum f A)" -apply (case_tac "finite A") - prefer 2 apply (simp add: setsum_def) -apply (erule finite_induct) - apply (auto simp add: insert_Diff_if) -apply (drule_tac a = a in mk_disjoint_insert, auto) -done - -lemma setsum_diff1: "finite A \ - (setsum f (A - {a}) :: ('a::ab_group_add)) = - (if a:A then setsum f A - f a else setsum f A)" -by (erule finite_induct) (auto simp add: insert_Diff_if) - -lemma setsum_diff1'[rule_format]: - "finite A \ a \ A \ (\ x \ A. f x) = f a + (\ x \ (A - {a}). f x)" -apply (erule finite_induct[where F=A and P="% A. (a \ A \ (\ x \ A. f x) = f a + (\ x \ (A - {a}). f x))"]) -apply (auto simp add: insert_Diff_if add_ac) -done - -lemma setsum_diff1_ring: assumes "finite A" "a \ A" - shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)" -unfolding setsum_diff1'[OF assms] by auto - -(* By Jeremy Siek: *) - -lemma setsum_diff_nat: -assumes "finite B" and "B \ A" -shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" -using assms -proof induct - show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp -next - fix F x assume finF: "finite F" and xnotinF: "x \ F" - and xFinA: "insert x F \ A" - and IH: "F \ A \ setsum f (A - F) = setsum f A - setsum f F" - from xnotinF xFinA have xinAF: "x \ (A - F)" by simp - from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x" - by (simp add: setsum_diff1_nat) - from xFinA have "F \ A" by simp - with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp - with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x" - by simp - from xnotinF have "A - insert x F = (A - F) - {x}" by auto - with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" - by simp - from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp - with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" - by simp - thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp -qed - -lemma setsum_diff: - assumes le: "finite A" "B \ A" - shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))" -proof - - from le have finiteB: "finite B" using finite_subset by auto - show ?thesis using finiteB le - proof induct - case empty - thus ?case by auto - next - case (insert x F) - thus ?case using le finiteB - by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) - qed -qed - -lemma setsum_mono: - assumes le: "\i. i\K \ f (i::'a) \ ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))" - shows "(\i\K. f i) \ (\i\K. g i)" -proof (cases "finite K") - case True - thus ?thesis using le - proof induct - case empty - thus ?case by simp - next - case insert - thus ?case using add_mono by fastsimp - qed -next - case False - thus ?thesis - by (simp add: setsum_def) -qed - -lemma setsum_strict_mono: - fixes f :: "'a \ 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}" - assumes "finite A" "A \ {}" - and "!!x. x:A \ f x < g x" - shows "setsum f A < setsum g A" - using prems -proof (induct rule: finite_ne_induct) - case singleton thus ?case by simp -next - case insert thus ?case by (auto simp: add_strict_mono) -qed - -lemma setsum_negf: - "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" -proof (cases "finite A") - case True thus ?thesis by (induct set: finite) auto -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_subtractf: - "setsum (%x. ((f x)::'a::ab_group_add) - g x) A = - setsum f A - setsum g A" -proof (cases "finite A") - case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf) -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_nonneg: - assumes nn: "\x\A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \ f x" - shows "0 \ setsum f A" -proof (cases "finite A") - case True thus ?thesis using nn - proof induct - case empty then show ?case by simp - next - case (insert x F) - then have "0 + 0 \ f x + setsum f F" by (blast intro: add_mono) - with insert show ?case by simp - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_nonpos: - assumes np: "\x\A. f x \ (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})" - shows "setsum f A \ 0" -proof (cases "finite A") - case True thus ?thesis using np - proof induct - case empty then show ?case by simp - next - case (insert x F) - then have "f x + setsum f F \ 0 + 0" by (blast intro: add_mono) - with insert show ?case by simp - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_mono2: -fixes f :: "'a \ 'b :: {ordered_ab_semigroup_add_imp_le,comm_monoid_add}" -assumes fin: "finite B" and sub: "A \ B" and nn: "\b. b \ B-A \ 0 \ f b" -shows "setsum f A \ setsum f B" -proof - - have "setsum f A \ setsum f A + setsum f (B-A)" - by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) - also have "\ = setsum f (A \ (B-A))" using fin finite_subset[OF sub fin] - by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) - also have "A \ (B-A) = B" using sub by blast - finally show ?thesis . -qed - -lemma setsum_mono3: "finite B ==> A <= B ==> - ALL x: B - A. - 0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==> - setsum f A <= setsum f B" - apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") - apply (erule ssubst) - apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") - apply simp - apply (rule add_left_mono) - apply (erule setsum_nonneg) - apply (subst setsum_Un_disjoint [THEN sym]) - apply (erule finite_subset, assumption) - apply (rule finite_subset) - prefer 2 - apply assumption - apply (auto simp add: sup_absorb2) -done - -lemma setsum_right_distrib: - fixes f :: "'a => ('b::semiring_0)" - shows "r * setsum f A = setsum (%n. r * f n) A" -proof (cases "finite A") - case True - thus ?thesis - proof induct - case empty thus ?case by simp - next - case (insert x A) thus ?case by (simp add: right_distrib) - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_left_distrib: - "setsum f A * (r::'a::semiring_0) = (\n\A. f n * r)" -proof (cases "finite A") - case True - then show ?thesis - proof induct - case empty thus ?case by simp - next - case (insert x A) thus ?case by (simp add: left_distrib) - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_divide_distrib: - "setsum f A / (r::'a::field) = (\n\A. f n / r)" -proof (cases "finite A") - case True - then show ?thesis - proof induct - case empty thus ?case by simp - next - case (insert x A) thus ?case by (simp add: add_divide_distrib) - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_abs[iff]: - fixes f :: "'a => ('b::ordered_ab_group_add_abs)" - shows "abs (setsum f A) \ setsum (%i. abs(f i)) A" -proof (cases "finite A") - case True - thus ?thesis - proof induct - case empty thus ?case by simp - next - case (insert x A) - thus ?case by (auto intro: abs_triangle_ineq order_trans) - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma setsum_abs_ge_zero[iff]: - fixes f :: "'a => ('b::ordered_ab_group_add_abs)" - shows "0 \ setsum (%i. abs(f i)) A" -proof (cases "finite A") - case True - thus ?thesis - proof induct - case empty thus ?case by simp - next - case (insert x A) thus ?case by (auto simp: add_nonneg_nonneg) - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - -lemma abs_setsum_abs[simp]: - fixes f :: "'a => ('b::ordered_ab_group_add_abs)" - shows "abs (\a\A. abs(f a)) = (\a\A. abs(f a))" -proof (cases "finite A") - case True - thus ?thesis - proof induct - case empty thus ?case by simp - next - case (insert a A) - hence "\\a\insert a A. \f a\\ = \\f a\ + (\a\A. \f a\)\" by simp - also have "\ = \\f a\ + \\a\A. \f a\\\" using insert by simp - also have "\ = \f a\ + \\a\A. \f a\\" - by (simp del: abs_of_nonneg) - also have "\ = (\a\insert a A. \f a\)" using insert by simp - finally show ?case . - qed -next - case False thus ?thesis by (simp add: setsum_def) -qed - - -lemma setsum_Plus: - fixes A :: "'a set" and B :: "'b set" - assumes fin: "finite A" "finite B" - shows "setsum f (A <+> B) = setsum (f \ Inl) A + setsum (f \ Inr) B" -proof - - have "A <+> B = Inl ` A \ Inr ` B" by auto - moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)" - by(auto intro: finite_imageI) - moreover have "Inl ` A \ Inr ` B = ({} :: ('a + 'b) set)" by auto - moreover have "inj_on (Inl :: 'a \ 'a + 'b) A" "inj_on (Inr :: 'b \ 'a + 'b) B" by(auto intro: inj_onI) - ultimately show ?thesis using fin by(simp add: setsum_Un_disjoint setsum_reindex) -qed - - -text {* Commuting outer and inner summation *} - -lemma swap_inj_on: - "inj_on (%(i, j). (j, i)) (A \ B)" - by (unfold inj_on_def) fast - -lemma swap_product: - "(%(i, j). (j, i)) ` (A \ B) = B \ A" - by (simp add: split_def image_def) blast - -lemma setsum_commute: - "(\i\A. \j\B. f i j) = (\j\B. \i\A. f i j)" -proof (simp add: setsum_cartesian_product) - have "(\(x,y) \ A <*> B. f x y) = - (\(y,x) \ (%(i, j). (j, i)) ` (A \ B). f x y)" - (is "?s = _") - apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on) - apply (simp add: split_def) - done - also have "... = (\(y,x)\B \ A. f x y)" - (is "_ = ?t") - apply (simp add: swap_product) - done - finally show "?s = ?t" . -qed - -lemma setsum_product: - fixes f :: "'a => ('b::semiring_0)" - shows "setsum f A * setsum g B = (\i\A. \j\B. f i * g j)" - by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute) - -lemma setsum_mult_setsum_if_inj: -fixes f :: "'a => ('b::semiring_0)" -shows "inj_on (%(a,b). f a * g b) (A \ B) ==> - setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}" -by(auto simp: setsum_product setsum_cartesian_product - intro!: setsum_reindex_cong[symmetric]) - - -subsection {* Generalized product over a set *} - -definition setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult" -where "setprod f A == if finite A then fold_image (op *) f 1 A else 1" - -abbreviation - Setprod ("\_" [1000] 999) where - "\A == setprod (%x. x) A" - -syntax - "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10) -syntax (xsymbols) - "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\_\_. _)" [0, 51, 10] 10) -syntax (HTML output) - "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\_\_. _)" [0, 51, 10] 10) - -translations -- {* Beware of argument permutation! *} - "PROD i:A. b" == "CONST setprod (%i. b) A" - "\i\A. b" == "CONST setprod (%i. b) A" - -text{* Instead of @{term"\x\{x. P}. e"} we introduce the shorter - @{text"\x|P. e"}. *} - -syntax - "_qsetprod" :: "pttrn \ bool \ 'a \ 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10) -syntax (xsymbols) - "_qsetprod" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) -syntax (HTML output) - "_qsetprod" :: "pttrn \ bool \ 'a \ 'a" ("(3\_ | (_)./ _)" [0,0,10] 10) - -translations - "PROD x|P. t" => "CONST setprod (%x. t) {x. P}" - "\x|P. t" => "CONST setprod (%x. t) {x. P}" - - -lemma setprod_empty [simp]: "setprod f {} = 1" -by (auto simp add: setprod_def) - -lemma setprod_insert [simp]: "[| finite A; a \ A |] ==> - setprod f (insert a A) = f a * setprod f A" -by (simp add: setprod_def) - -lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1" -by (simp add: setprod_def) - -lemma setprod_reindex: - "inj_on f B ==> setprod h (f ` B) = setprod (h \ f) B" -by(auto simp: setprod_def fold_image_reindex dest!:finite_imageD) - -lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" -by (auto simp add: setprod_reindex) - -lemma setprod_cong: - "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" -by(fastsimp simp: setprod_def intro: fold_image_cong) - -lemma strong_setprod_cong[cong]: - "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" -by(fastsimp simp: simp_implies_def setprod_def intro: fold_image_cong) - -lemma setprod_reindex_cong: "inj_on f A ==> - B = f ` A ==> g = h \ f ==> setprod h B = setprod g A" -by (frule setprod_reindex, simp) - -lemma strong_setprod_reindex_cong: assumes i: "inj_on f A" - and B: "B = f ` A" and eq: "\x. x \ A \ g x = (h \ f) x" - shows "setprod h B = setprod g A" -proof- - have "setprod h B = setprod (h o f) A" - by (simp add: B setprod_reindex[OF i, of h]) - then show ?thesis apply simp - apply (rule setprod_cong) - apply simp - by (simp add: eq) -qed - -lemma setprod_Un_one: - assumes fS: "finite S" and fT: "finite T" - and I0: "\x \ S\T. f x = 1" - shows "setprod f (S \ T) = setprod f S * setprod f T" - using fS fT - apply (simp add: setprod_def) - apply (rule fold_image_Un_one) - using I0 by auto - - -lemma setprod_1: "setprod (%i. 1) A = 1" -apply (case_tac "finite A") -apply (erule finite_induct, auto simp add: mult_ac) -done - -lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" -apply (subgoal_tac "setprod f F = setprod (%x. 1) F") -apply (erule ssubst, rule setprod_1) -apply (rule setprod_cong, auto) -done - -lemma setprod_Un_Int: "finite A ==> finite B - ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" -by(simp add: setprod_def fold_image_Un_Int[symmetric]) - -lemma setprod_Un_disjoint: "finite A ==> finite B - ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B" -by (subst setprod_Un_Int [symmetric], auto) - -lemma setprod_mono_one_left: - assumes fT: "finite T" and ST: "S \ T" - and z: "\i \ T - S. f i = 1" - shows "setprod f S = setprod f T" -proof- - have eq: "T = S \ (T - S)" using ST by blast - have d: "S \ (T - S) = {}" using ST by blast - from fT ST have f: "finite S" "finite (T - S)" by (auto intro: finite_subset) - show ?thesis - by (simp add: setprod_Un_disjoint[OF f d, unfolded eq[symmetric]] setprod_1'[OF z]) -qed - -lemmas setprod_mono_one_right = setprod_mono_one_left [THEN sym] - -lemma setprod_delta: - assumes fS: "finite S" - shows "setprod (\k. if k=a then b k else 1) S = (if a \ S then b a else 1)" -proof- - let ?f = "(\k. if k=a then b k else 1)" - {assume a: "a \ S" - hence "\ k\ S. ?f k = 1" by simp - hence ?thesis using a by (simp add: setprod_1 cong add: setprod_cong) } - moreover - {assume a: "a \ S" - let ?A = "S - {a}" - let ?B = "{a}" - have eq: "S = ?A \ ?B" using a by blast - have dj: "?A \ ?B = {}" by simp - from fS have fAB: "finite ?A" "finite ?B" by auto - have fA1: "setprod ?f ?A = 1" apply (rule setprod_1') by auto - have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" - using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] - by simp - then have ?thesis using a by (simp add: fA1 cong add: setprod_cong cong del: if_weak_cong)} - ultimately show ?thesis by blast -qed - -lemma setprod_delta': - assumes fS: "finite S" shows - "setprod (\k. if a = k then b k else 1) S = - (if a\ S then b a else 1)" - using setprod_delta[OF fS, of a b, symmetric] - by (auto intro: setprod_cong) - - -lemma setprod_UN_disjoint: - "finite I ==> (ALL i:I. finite (A i)) ==> - (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) ==> - setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" -by(simp add: setprod_def fold_image_UN_disjoint cong: setprod_cong) - -lemma setprod_Union_disjoint: - "[| (ALL A:C. finite A); - (ALL A:C. ALL B:C. A \ B --> A Int B = {}) |] - ==> setprod f (Union C) = setprod (setprod f) C" -apply (cases "finite C") - prefer 2 apply (force dest: finite_UnionD simp add: setprod_def) - apply (frule setprod_UN_disjoint [of C id f]) - apply (unfold Union_def id_def, assumption+) -done - -lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> - (\x\A. (\y\ B x. f x y)) = - (\(x,y)\(SIGMA x:A. B x). f x y)" -by(simp add:setprod_def fold_image_Sigma split_def cong:setprod_cong) - -text{*Here we can eliminate the finiteness assumptions, by cases.*} -lemma setprod_cartesian_product: - "(\x\A. (\y\ B. f x y)) = (\(x,y)\(A <*> B). f x y)" -apply (cases "finite A") - apply (cases "finite B") - apply (simp add: setprod_Sigma) - apply (cases "A={}", simp) - apply (simp add: setprod_1) -apply (auto simp add: setprod_def - dest: finite_cartesian_productD1 finite_cartesian_productD2) -done - -lemma setprod_timesf: - "setprod (%x. f x * g x) A = (setprod f A * setprod g A)" -by(simp add:setprod_def fold_image_distrib) - - -subsubsection {* Properties in more restricted classes of structures *} - -lemma setprod_eq_1_iff [simp]: - "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" -by (induct set: finite) auto - -lemma setprod_zero: - "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0" -apply (induct set: finite, force, clarsimp) -apply (erule disjE, auto) -done - -lemma setprod_nonneg [rule_format]: - "(ALL x: A. (0::'a::linordered_semidom) \ f x) --> 0 \ setprod f A" -by (cases "finite A", induct set: finite, simp_all add: mult_nonneg_nonneg) - -lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x) - --> 0 < setprod f A" -by (cases "finite A", induct set: finite, simp_all add: mult_pos_pos) - -lemma setprod_zero_iff[simp]: "finite A ==> - (setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) = - (EX x: A. f x = 0)" -by (erule finite_induct, auto simp:no_zero_divisors) - -lemma setprod_pos_nat: - "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0" -using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) - -lemma setprod_pos_nat_iff[simp]: - "finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))" -using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) - -lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \ 0) ==> - (setprod f (A Un B) :: 'a ::{field}) - = setprod f A * setprod f B / setprod f (A Int B)" -by (subst setprod_Un_Int [symmetric], auto) - -lemma setprod_diff1: "finite A ==> f a \ 0 ==> - (setprod f (A - {a}) :: 'a :: {field}) = - (if a:A then setprod f A / f a else setprod f A)" -by (erule finite_induct) (auto simp add: insert_Diff_if) - -lemma setprod_inversef: - fixes f :: "'b \ 'a::{field,division_by_zero}" - shows "finite A ==> setprod (inverse \ f) A = inverse (setprod f A)" -by (erule finite_induct) auto - -lemma setprod_dividef: - fixes f :: "'b \ 'a::{field,division_by_zero}" - shows "finite A - ==> setprod (%x. f x / g x) A = setprod f A / setprod g A" -apply (subgoal_tac - "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \ g) x) A") -apply (erule ssubst) -apply (subst divide_inverse) -apply (subst setprod_timesf) -apply (subst setprod_inversef, assumption+, rule refl) -apply (rule setprod_cong, rule refl) -apply (subst divide_inverse, auto) -done - -lemma setprod_dvd_setprod [rule_format]: - "(ALL x : A. f x dvd g x) \ setprod f A dvd setprod g A" - apply (cases "finite A") - apply (induct set: finite) - apply (auto simp add: dvd_def) - apply (rule_tac x = "k * ka" in exI) - apply (simp add: algebra_simps) -done - -lemma setprod_dvd_setprod_subset: - "finite B \ A <= B \ setprod f A dvd setprod f B" - apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)") - apply (unfold dvd_def, blast) - apply (subst setprod_Un_disjoint [symmetric]) - apply (auto elim: finite_subset intro: setprod_cong) -done - -lemma setprod_dvd_setprod_subset2: - "finite B \ A <= B \ ALL x : A. (f x::'a::comm_semiring_1) dvd g x \ - setprod f A dvd setprod g B" - apply (rule dvd_trans) - apply (rule setprod_dvd_setprod, erule (1) bspec) - apply (erule (1) setprod_dvd_setprod_subset) -done - -lemma dvd_setprod: "finite A \ i:A \ - (f i ::'a::comm_semiring_1) dvd setprod f A" -by (induct set: finite) (auto intro: dvd_mult) - -lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \ - (d::'a::comm_semiring_1) dvd (SUM x : A. f x)" - apply (cases "finite A") - apply (induct set: finite) - apply auto -done - -lemma setprod_mono: - fixes f :: "'a \ 'b\linordered_semidom" - assumes "\i\A. 0 \ f i \ f i \ g i" - shows "setprod f A \ setprod g A" -proof (cases "finite A") - case True - hence ?thesis "setprod f A \ 0" using subset_refl[of A] - proof (induct A rule: finite_subset_induct) - case (insert a F) - thus "setprod f (insert a F) \ setprod g (insert a F)" "0 \ setprod f (insert a F)" - unfolding setprod_insert[OF insert(1,3)] - using assms[rule_format,OF insert(2)] insert - by (auto intro: mult_mono mult_nonneg_nonneg) - qed auto - thus ?thesis by simp -qed auto - -lemma abs_setprod: - fixes f :: "'a \ 'b\{linordered_field,abs}" - shows "abs (setprod f A) = setprod (\x. abs (f x)) A" -proof (cases "finite A") - case True thus ?thesis - by induct (auto simp add: field_simps abs_mult) -qed auto - - -subsection {* Finite cardinality *} - -text {* This definition, although traditional, is ugly to work with: -@{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}. -But now that we have @{text setsum} things are easy: -*} - -definition card :: "'a set \ nat" where - "card A = setsum (\x. 1) A" - -lemmas card_eq_setsum = card_def - -lemma card_empty [simp]: "card {} = 0" - by (simp add: card_def) - -lemma card_insert_disjoint [simp]: - "finite A ==> x \ A ==> card (insert x A) = Suc(card A)" - by (simp add: card_def) - -lemma card_insert_if: - "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))" - by (simp add: insert_absorb) - -lemma card_infinite [simp]: "~ finite A ==> card A = 0" - by (simp add: card_def) - -lemma card_ge_0_finite: - "card A > 0 \ finite A" - by (rule ccontr) simp - -lemma card_0_eq [simp,noatp]: "finite A ==> (card A = 0) = (A = {})" - apply auto - apply (drule_tac a = x in mk_disjoint_insert, clarify, auto) - done - -lemma finite_UNIV_card_ge_0: - "finite (UNIV :: 'a set) \ card (UNIV :: 'a set) > 0" - by (rule ccontr) simp - -lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)" - by auto - -lemma card_gt_0_iff: "(0 < card A) = (A \ {} & finite A)" - by (simp add: neq0_conv [symmetric] card_eq_0_iff) - -lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A" -apply(rule_tac t = A in insert_Diff [THEN subst], assumption) -apply(simp del:insert_Diff_single) -done - -lemma card_Diff_singleton: - "finite A ==> x: A ==> card (A - {x}) = card A - 1" -by (simp add: card_Suc_Diff1 [symmetric]) - -lemma card_Diff_singleton_if: - "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)" -by (simp add: card_Diff_singleton) - -lemma card_Diff_insert[simp]: -assumes "finite A" and "a:A" and "a ~: B" -shows "card(A - insert a B) = card(A - B) - 1" -proof - - have "A - insert a B = (A - B) - {a}" using assms by blast - then show ?thesis using assms by(simp add:card_Diff_singleton) -qed - -lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))" -by (simp add: card_insert_if card_Suc_Diff1 del:card_Diff_insert) - -lemma card_insert_le: "finite A ==> card A <= card (insert x A)" -by (simp add: card_insert_if) - -lemma card_mono: "\ finite B; A \ B \ \ card A \ card B" -by (simp add: card_def setsum_mono2) - -lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" -apply (induct set: finite, simp, clarify) -apply (subgoal_tac "finite A & A - {x} <= F") - prefer 2 apply (blast intro: finite_subset, atomize) -apply (drule_tac x = "A - {x}" in spec) -apply (simp add: card_Diff_singleton_if split add: split_if_asm) -apply (case_tac "card A", auto) -done - -lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" -apply (simp add: psubset_eq linorder_not_le [symmetric]) -apply (blast dest: card_seteq) -done - -lemma card_Un_Int: "finite A ==> finite B - ==> card A + card B = card (A Un B) + card (A Int B)" -by(simp add:card_def setsum_Un_Int) - -lemma card_Un_disjoint: "finite A ==> finite B - ==> A Int B = {} ==> card (A Un B) = card A + card B" -by (simp add: card_Un_Int) - -lemma card_Diff_subset: - "finite B ==> B <= A ==> card (A - B) = card A - card B" -by(simp add:card_def setsum_diff_nat) - -lemma card_Diff_subset_Int: - assumes AB: "finite (A \ B)" shows "card (A - B) = card A - card (A \ B)" -proof - - have "A - B = A - A \ B" by auto - thus ?thesis - by (simp add: card_Diff_subset AB) -qed - -lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A" -apply (rule Suc_less_SucD) -apply (simp add: card_Suc_Diff1 del:card_Diff_insert) -done - -lemma card_Diff2_less: - "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A" -apply (case_tac "x = y") - apply (simp add: card_Diff1_less del:card_Diff_insert) -apply (rule less_trans) - prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert) -done - -lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A" -apply (case_tac "x : A") - apply (simp_all add: card_Diff1_less less_imp_le) -done - -lemma card_psubset: "finite B ==> A \ B ==> card A < card B ==> A < B" -by (erule psubsetI, blast) - -lemma insert_partition: - "\ x \ F; \c1 \ insert x F. \c2 \ insert x F. c1 \ c2 \ c1 \ c2 = {} \ - \ x \ \ F = {}" -by auto - -lemma finite_psubset_induct[consumes 1, case_names psubset]: - assumes "finite A" and "!!A. finite A \ (!!B. finite B \ B \ A \ P(B)) \ P(A)" shows "P A" -using assms(1) -proof (induct A rule: measure_induct_rule[where f=card]) - case (less A) - show ?case - proof(rule assms(2)[OF less(2)]) - fix B assume "finite B" "B \ A" - show "P B" by(rule less(1)[OF psubset_card_mono[OF less(2) `B \ A`] `finite B`]) - qed -qed - -text{* main cardinality theorem *} -lemma card_partition [rule_format]: - "finite C ==> - finite (\ C) --> - (\c\C. card c = k) --> - (\c1 \ C. \c2 \ C. c1 \ c2 --> c1 \ c2 = {}) --> - k * card(C) = card (\ C)" -apply (erule finite_induct, simp) -apply (simp add: card_Un_disjoint insert_partition - finite_subset [of _ "\ (insert x F)"]) -done - -lemma card_eq_UNIV_imp_eq_UNIV: - assumes fin: "finite (UNIV :: 'a set)" - and card: "card A = card (UNIV :: 'a set)" - shows "A = (UNIV :: 'a set)" -proof - show "A \ UNIV" by simp - show "UNIV \ A" - proof - fix x - show "x \ A" - proof (rule ccontr) - assume "x \ A" - then have "A \ UNIV" by auto - with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono) - with card show False by simp - qed - qed -qed - -text{*The form of a finite set of given cardinality*} - -lemma card_eq_SucD: -assumes "card A = Suc k" -shows "\b B. A = insert b B & b \ B & card B = k & (k=0 \ B={})" -proof - - have fin: "finite A" using assms by (auto intro: ccontr) - moreover have "card A \ 0" using assms by auto - ultimately obtain b where b: "b \ A" by auto - show ?thesis - proof (intro exI conjI) - show "A = insert b (A-{b})" using b by blast - show "b \ A - {b}" by blast - show "card (A - {b}) = k" and "k = 0 \ A - {b} = {}" - using assms b fin by(fastsimp dest:mk_disjoint_insert)+ - qed -qed - -lemma card_Suc_eq: - "(card A = Suc k) = - (\b B. A = insert b B & b \ B & card B = k & (k=0 \ B={}))" -apply(rule iffI) - apply(erule card_eq_SucD) -apply(auto) -apply(subst card_insert) - apply(auto intro:ccontr) -done - -lemma finite_fun_UNIVD2: - assumes fin: "finite (UNIV :: ('a \ 'b) set)" - shows "finite (UNIV :: 'b set)" -proof - - from fin have "finite (range (\f :: 'a \ 'b. f arbitrary))" - by(rule finite_imageI) - moreover have "UNIV = range (\f :: 'a \ 'b. f arbitrary)" - by(rule UNIV_eq_I) auto - ultimately show "finite (UNIV :: 'b set)" by simp -qed - -lemma setsum_constant [simp]: "(\x \ A. y) = of_nat(card A) * y" -apply (cases "finite A") -apply (erule finite_induct) -apply (auto simp add: algebra_simps) -done - -lemma setprod_constant: "finite A ==> (\x\ A. (y::'a::{comm_monoid_mult})) = y^(card A)" -apply (erule finite_induct) -apply auto -done - -lemma setprod_gen_delta: - assumes fS: "finite S" - shows "setprod (\k. if k=a then b k else c) S = (if a \ S then (b a ::'a::{comm_monoid_mult}) * c^ (card S - 1) else c^ card S)" -proof- - let ?f = "(\k. if k=a then b k else c)" - {assume a: "a \ S" - hence "\ k\ S. ?f k = c" by simp - hence ?thesis using a setprod_constant[OF fS, of c] by (simp add: setprod_1 cong add: setprod_cong) } - moreover - {assume a: "a \ S" - let ?A = "S - {a}" - let ?B = "{a}" - have eq: "S = ?A \ ?B" using a by blast - have dj: "?A \ ?B = {}" by simp - from fS have fAB: "finite ?A" "finite ?B" by auto - have fA0:"setprod ?f ?A = setprod (\i. c) ?A" - apply (rule setprod_cong) by auto - have cA: "card ?A = card S - 1" using fS a by auto - have fA1: "setprod ?f ?A = c ^ card ?A" unfolding fA0 apply (rule setprod_constant) using fS by auto - have "setprod ?f ?A * setprod ?f ?B = setprod ?f S" - using setprod_Un_disjoint[OF fAB dj, of ?f, unfolded eq[symmetric]] - by simp - then have ?thesis using a cA - by (simp add: fA1 ring_simps cong add: setprod_cong cong del: if_weak_cong)} - ultimately show ?thesis by blast -qed - - -lemma setsum_bounded: - assumes le: "\i. i\A \ f i \ (K::'a::{semiring_1, ordered_ab_semigroup_add})" - shows "setsum f A \ of_nat(card A) * K" -proof (cases "finite A") - case True - thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp -next - case False thus ?thesis by (simp add: setsum_def) -qed - - -lemma card_UNIV_unit: "card (UNIV :: unit set) = 1" - unfolding UNIV_unit by simp - - -subsubsection {* Cardinality of unions *} - -lemma card_UN_disjoint: - "finite I ==> (ALL i:I. finite (A i)) ==> - (ALL i:I. ALL j:I. i \ j --> A i Int A j = {}) - ==> card (UNION I A) = (\i\I. card(A i))" -apply (simp add: card_def del: setsum_constant) -apply (subgoal_tac - "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") -apply (simp add: setsum_UN_disjoint del: setsum_constant) -apply (simp cong: setsum_cong) -done - -lemma card_Union_disjoint: - "finite C ==> (ALL A:C. finite A) ==> - (ALL A:C. ALL B:C. A \ B --> A Int B = {}) - ==> card (Union C) = setsum card C" -apply (frule card_UN_disjoint [of C id]) -apply (unfold Union_def id_def, assumption+) -done - - -subsubsection {* Cardinality of image *} - -text{*The image of a finite set can be expressed using @{term fold_image}.*} -lemma image_eq_fold_image: - "finite A ==> f ` A = fold_image (op Un) (%x. {f x}) {} A" -proof (induct rule: finite_induct) - case empty then show ?case by simp -next - interpret ab_semigroup_mult "op Un" - proof qed auto - case insert - then show ?case by simp -qed - -lemma card_image_le: "finite A ==> card (f ` A) <= card A" -apply (induct set: finite) - apply simp -apply (simp add: le_SucI card_insert_if) -done - -lemma card_image: "inj_on f A ==> card (f ` A) = card A" -by(simp add:card_def setsum_reindex o_def del:setsum_constant) - -lemma bij_betw_same_card: "bij_betw f A B \ card A = card B" -by(auto simp: card_image bij_betw_def) - -lemma endo_inj_surj: "finite A ==> f ` A \ A ==> inj_on f A ==> f ` A = A" -by (simp add: card_seteq card_image) - -lemma eq_card_imp_inj_on: - "[| finite A; card(f ` A) = card A |] ==> inj_on f A" -apply (induct rule:finite_induct) -apply simp -apply(frule card_image_le[where f = f]) -apply(simp add:card_insert_if split:if_splits) -done - -lemma inj_on_iff_eq_card: - "finite A ==> inj_on f A = (card(f ` A) = card A)" -by(blast intro: card_image eq_card_imp_inj_on) - - -lemma card_inj_on_le: - "[|inj_on f A; f ` A \ B; finite B |] ==> card A \ card B" -apply (subgoal_tac "finite A") - apply (force intro: card_mono simp add: card_image [symmetric]) -apply (blast intro: finite_imageD dest: finite_subset) -done - -lemma card_bij_eq: - "[|inj_on f A; f ` A \ B; inj_on g B; g ` B \ A; - finite A; finite B |] ==> card A = card B" -by (auto intro: le_antisym card_inj_on_le) - - -subsubsection {* Cardinality of products *} - -(* -lemma SigmaI_insert: "y \ A ==> - (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \ (SIGMA x: A. B x))" - by auto -*) - -lemma card_SigmaI [simp]: - "\ finite A; ALL a:A. finite (B a) \ - \ card (SIGMA x: A. B x) = (\a\A. card (B a))" -by(simp add:card_def setsum_Sigma del:setsum_constant) - -lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" -apply (cases "finite A") -apply (cases "finite B") -apply (auto simp add: card_eq_0_iff - dest: finite_cartesian_productD1 finite_cartesian_productD2) -done - -lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)" -by (simp add: card_cartesian_product) - - -subsubsection {* Cardinality of sums *} - -lemma card_Plus: - assumes "finite A" and "finite B" - shows "card (A <+> B) = card A + card B" -proof - - have "Inl`A \ Inr`B = {}" by fast - with assms show ?thesis - unfolding Plus_def - by (simp add: card_Un_disjoint card_image) -qed - -lemma card_Plus_conv_if: - "card (A <+> B) = (if finite A \ finite B then card(A) + card(B) else 0)" -by(auto simp: card_def setsum_Plus simp del: setsum_constant) - - -subsubsection {* Cardinality of the Powerset *} - -lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) -apply (induct set: finite) - apply (simp_all add: Pow_insert) -apply (subst card_Un_disjoint, blast) - apply (blast intro: finite_imageI, blast) -apply (subgoal_tac "inj_on (insert x) (Pow F)") - apply (simp add: card_image Pow_insert) -apply (unfold inj_on_def) -apply (blast elim!: equalityE) -done - -text {* Relates to equivalence classes. Based on a theorem of F. Kammüller. *} - -lemma dvd_partition: - "finite (Union C) ==> - ALL c : C. k dvd card c ==> - (ALL c1: C. ALL c2: C. c1 \ c2 --> c1 Int c2 = {}) ==> - k dvd card (Union C)" -apply(frule finite_UnionD) -apply(rotate_tac -1) -apply (induct set: finite, simp_all, clarify) -apply (subst card_Un_disjoint) - apply (auto simp add: disjoint_eq_subset_Compl) -done - - -subsubsection {* Relating injectivity and surjectivity *} - -lemma finite_surj_inj: "finite(A) \ A <= f`A \ inj_on f A" -apply(rule eq_card_imp_inj_on, assumption) -apply(frule finite_imageI) -apply(drule (1) card_seteq) - apply(erule card_image_le) -apply simp -done - -lemma finite_UNIV_surj_inj: fixes f :: "'a \ 'a" -shows "finite(UNIV:: 'a set) \ surj f \ inj f" -by (blast intro: finite_surj_inj subset_UNIV dest:surj_range) - -lemma finite_UNIV_inj_surj: fixes f :: "'a \ 'a" -shows "finite(UNIV:: 'a set) \ inj f \ surj f" -by(fastsimp simp:surj_def dest!: endo_inj_surj) - -corollary infinite_UNIV_nat[iff]: "~finite(UNIV::nat set)" -proof - assume "finite(UNIV::nat set)" - with finite_UNIV_inj_surj[of Suc] - show False by simp (blast dest: Suc_neq_Zero surjD) -qed - -(* Often leads to bogus ATP proofs because of reduced type information, hence noatp *) -lemma infinite_UNIV_char_0[noatp]: - "\ finite (UNIV::'a::semiring_char_0 set)" -proof - assume "finite (UNIV::'a set)" - with subset_UNIV have "finite (range of_nat::'a set)" - by (rule finite_subset) - moreover have "inj (of_nat::nat \ 'a)" - by (simp add: inj_on_def) - ultimately have "finite (UNIV::nat set)" - by (rule finite_imageD) - then show "False" - by simp -qed subsection{* A fold functional for non-empty sets *} @@ -2811,561 +1354,6 @@ qed -subsubsection {* Fold1 in lattices with @{const inf} and @{const sup} *} - -text{* - As an application of @{text fold1} we define infimum - and supremum in (not necessarily complete!) lattices - over (non-empty) sets by means of @{text fold1}. -*} - -context semilattice_inf -begin - -lemma below_fold1_iff: - assumes "finite A" "A \ {}" - shows "x \ fold1 inf A \ (\a\A. x \ a)" -proof - - interpret ab_semigroup_idem_mult inf - by (rule ab_semigroup_idem_mult_inf) - show ?thesis using assms by (induct rule: finite_ne_induct) simp_all -qed - -lemma fold1_belowI: - assumes "finite A" - and "a \ A" - shows "fold1 inf A \ a" -proof - - from assms have "A \ {}" by auto - from `finite A` `A \ {}` `a \ A` show ?thesis - proof (induct rule: finite_ne_induct) - case singleton thus ?case by simp - next - interpret ab_semigroup_idem_mult inf - by (rule ab_semigroup_idem_mult_inf) - case (insert x F) - from insert(5) have "a = x \ a \ F" by simp - thus ?case - proof - assume "a = x" thus ?thesis using insert - by (simp add: mult_ac) - next - assume "a \ F" - hence bel: "fold1 inf F \ a" by (rule insert) - have "inf (fold1 inf (insert x F)) a = inf x (inf (fold1 inf F) a)" - using insert by (simp add: mult_ac) - also have "inf (fold1 inf F) a = fold1 inf F" - using bel by (auto intro: antisym) - also have "inf x \ = fold1 inf (insert x F)" - using insert by (simp add: mult_ac) - finally have aux: "inf (fold1 inf (insert x F)) a = fold1 inf (insert x F)" . - moreover have "inf (fold1 inf (insert x F)) a \ a" by simp - ultimately show ?thesis by simp - qed - qed -qed - -end - -context lattice -begin - -definition - Inf_fin :: "'a set \ 'a" ("\\<^bsub>fin\<^esub>_" [900] 900) -where - "Inf_fin = fold1 inf" - -definition - Sup_fin :: "'a set \ 'a" ("\\<^bsub>fin\<^esub>_" [900] 900) -where - "Sup_fin = fold1 sup" - -lemma Inf_le_Sup [simp]: "\ finite A; A \ {} \ \ \\<^bsub>fin\<^esub>A \ \\<^bsub>fin\<^esub>A" -apply(unfold Sup_fin_def Inf_fin_def) -apply(subgoal_tac "EX a. a:A") -prefer 2 apply blast -apply(erule exE) -apply(rule order_trans) -apply(erule (1) fold1_belowI) -apply(erule (1) semilattice_inf.fold1_belowI [OF dual_semilattice]) -done - -lemma sup_Inf_absorb [simp]: - "finite A \ a \ A \ sup a (\\<^bsub>fin\<^esub>A) = a" -apply(subst sup_commute) -apply(simp add: Inf_fin_def sup_absorb2 fold1_belowI) -done - -lemma inf_Sup_absorb [simp]: - "finite A \ a \ A \ inf a (\\<^bsub>fin\<^esub>A) = a" -by (simp add: Sup_fin_def inf_absorb1 - semilattice_inf.fold1_belowI [OF dual_semilattice]) - -end - -context distrib_lattice -begin - -lemma sup_Inf1_distrib: - assumes "finite A" - and "A \ {}" - shows "sup x (\\<^bsub>fin\<^esub>A) = \\<^bsub>fin\<^esub>{sup x a|a. a \ A}" -proof - - interpret ab_semigroup_idem_mult inf - by (rule ab_semigroup_idem_mult_inf) - from assms show ?thesis - by (simp add: Inf_fin_def image_def - hom_fold1_commute [where h="sup x", OF sup_inf_distrib1]) - (rule arg_cong [where f="fold1 inf"], blast) -qed - -lemma sup_Inf2_distrib: - assumes A: "finite A" "A \ {}" and B: "finite B" "B \ {}" - shows "sup (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B) = \\<^bsub>fin\<^esub>{sup a b|a b. a \ A \ b \ B}" -using A proof (induct rule: finite_ne_induct) - case singleton thus ?case - by (simp add: sup_Inf1_distrib [OF B] fold1_singleton_def [OF Inf_fin_def]) -next - interpret ab_semigroup_idem_mult inf - by (rule ab_semigroup_idem_mult_inf) - case (insert x A) - have finB: "finite {sup x b |b. b \ B}" - by(rule finite_surj[where f = "sup x", OF B(1)], auto) - have finAB: "finite {sup a b |a b. a \ A \ b \ B}" - proof - - have "{sup a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {sup a b})" - by blast - thus ?thesis by(simp add: insert(1) B(1)) - qed - have ne: "{sup a b |a b. a \ A \ b \ B} \ {}" using insert B by blast - have "sup (\\<^bsub>fin\<^esub>(insert x A)) (\\<^bsub>fin\<^esub>B) = sup (inf x (\\<^bsub>fin\<^esub>A)) (\\<^bsub>fin\<^esub>B)" - using insert by (simp add: fold1_insert_idem_def [OF Inf_fin_def]) - also have "\ = inf (sup x (\\<^bsub>fin\<^esub>B)) (sup (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B))" by(rule sup_inf_distrib2) - also have "\ = inf (\\<^bsub>fin\<^esub>{sup x b|b. b \ B}) (\\<^bsub>fin\<^esub>{sup a b|a b. a \ A \ b \ B})" - using insert by(simp add:sup_Inf1_distrib[OF B]) - also have "\ = \\<^bsub>fin\<^esub>({sup x b |b. b \ B} \ {sup a b |a b. a \ A \ b \ B})" - (is "_ = \\<^bsub>fin\<^esub>?M") - using B insert - by (simp add: Inf_fin_def fold1_Un2 [OF finB _ finAB ne]) - also have "?M = {sup a b |a b. a \ insert x A \ b \ B}" - by blast - finally show ?case . -qed - -lemma inf_Sup1_distrib: - assumes "finite A" and "A \ {}" - shows "inf x (\\<^bsub>fin\<^esub>A) = \\<^bsub>fin\<^esub>{inf x a|a. a \ A}" -proof - - interpret ab_semigroup_idem_mult sup - by (rule ab_semigroup_idem_mult_sup) - from assms show ?thesis - by (simp add: Sup_fin_def image_def hom_fold1_commute [where h="inf x", OF inf_sup_distrib1]) - (rule arg_cong [where f="fold1 sup"], blast) -qed - -lemma inf_Sup2_distrib: - assumes A: "finite A" "A \ {}" and B: "finite B" "B \ {}" - shows "inf (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B) = \\<^bsub>fin\<^esub>{inf a b|a b. a \ A \ b \ B}" -using A proof (induct rule: finite_ne_induct) - case singleton thus ?case - by(simp add: inf_Sup1_distrib [OF B] fold1_singleton_def [OF Sup_fin_def]) -next - case (insert x A) - have finB: "finite {inf x b |b. b \ B}" - by(rule finite_surj[where f = "%b. inf x b", OF B(1)], auto) - have finAB: "finite {inf a b |a b. a \ A \ b \ B}" - proof - - have "{inf a b |a b. a \ A \ b \ B} = (UN a:A. UN b:B. {inf a b})" - by blast - thus ?thesis by(simp add: insert(1) B(1)) - qed - have ne: "{inf a b |a b. a \ A \ b \ B} \ {}" using insert B by blast - interpret ab_semigroup_idem_mult sup - by (rule ab_semigroup_idem_mult_sup) - have "inf (\\<^bsub>fin\<^esub>(insert x A)) (\\<^bsub>fin\<^esub>B) = inf (sup x (\\<^bsub>fin\<^esub>A)) (\\<^bsub>fin\<^esub>B)" - using insert by (simp add: fold1_insert_idem_def [OF Sup_fin_def]) - also have "\ = sup (inf x (\\<^bsub>fin\<^esub>B)) (inf (\\<^bsub>fin\<^esub>A) (\\<^bsub>fin\<^esub>B))" by(rule inf_sup_distrib2) - also have "\ = sup (\\<^bsub>fin\<^esub>{inf x b|b. b \ B}) (\\<^bsub>fin\<^esub>{inf a b|a b. a \ A \ b \ B})" - using insert by(simp add:inf_Sup1_distrib[OF B]) - also have "\ = \\<^bsub>fin\<^esub>({inf x b |b. b \ B} \ {inf a b |a b. a \ A \ b \ B})" - (is "_ = \\<^bsub>fin\<^esub>?M") - using B insert - by (simp add: Sup_fin_def fold1_Un2 [OF finB _ finAB ne]) - also have "?M = {inf a b |a b. a \ insert x A \ b \ B}" - by blast - finally show ?case . -qed - -end - - -subsubsection {* Fold1 in linear orders with @{const min} and @{const max} *} - -text{* - As an application of @{text fold1} we define minimum - and maximum in (not necessarily complete!) linear orders - over (non-empty) sets by means of @{text fold1}. -*} - -context linorder -begin - -lemma ab_semigroup_idem_mult_min: - "ab_semigroup_idem_mult min" - proof qed (auto simp add: min_def) - -lemma ab_semigroup_idem_mult_max: - "ab_semigroup_idem_mult max" - proof qed (auto simp add: max_def) - -lemma max_lattice: - "semilattice_inf (op \) (op >) max" - by (fact min_max.dual_semilattice) - -lemma dual_max: - "ord.max (op \) = min" - by (auto simp add: ord.max_def_raw min_def expand_fun_eq) - -lemma dual_min: - "ord.min (op \) = max" - by (auto simp add: ord.min_def_raw max_def expand_fun_eq) - -lemma strict_below_fold1_iff: - assumes "finite A" and "A \ {}" - shows "x < fold1 min A \ (\a\A. x < a)" -proof - - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - from assms show ?thesis - by (induct rule: finite_ne_induct) - (simp_all add: fold1_insert) -qed - -lemma fold1_below_iff: - assumes "finite A" and "A \ {}" - shows "fold1 min A \ x \ (\a\A. a \ x)" -proof - - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - from assms show ?thesis - by (induct rule: finite_ne_induct) - (simp_all add: fold1_insert min_le_iff_disj) -qed - -lemma fold1_strict_below_iff: - assumes "finite A" and "A \ {}" - shows "fold1 min A < x \ (\a\A. a < x)" -proof - - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - from assms show ?thesis - by (induct rule: finite_ne_induct) - (simp_all add: fold1_insert min_less_iff_disj) -qed - -lemma fold1_antimono: - assumes "A \ {}" and "A \ B" and "finite B" - shows "fold1 min B \ fold1 min A" -proof cases - assume "A = B" thus ?thesis by simp -next - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - assume "A \ B" - have B: "B = A \ (B-A)" using `A \ B` by blast - have "fold1 min B = fold1 min (A \ (B-A))" by(subst B)(rule refl) - also have "\ = min (fold1 min A) (fold1 min (B-A))" - proof - - have "finite A" by(rule finite_subset[OF `A \ B` `finite B`]) - moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *) - moreover have "(B-A) \ {}" using prems by blast - moreover have "A Int (B-A) = {}" using prems by blast - ultimately show ?thesis using `A \ {}` by (rule_tac fold1_Un) - qed - also have "\ \ fold1 min A" by (simp add: min_le_iff_disj) - finally show ?thesis . -qed - -definition - Min :: "'a set \ 'a" -where - "Min = fold1 min" - -definition - Max :: "'a set \ 'a" -where - "Max = fold1 max" - -lemmas Min_singleton [simp] = fold1_singleton_def [OF Min_def] -lemmas Max_singleton [simp] = fold1_singleton_def [OF Max_def] - -lemma Min_insert [simp]: - assumes "finite A" and "A \ {}" - shows "Min (insert x A) = min x (Min A)" -proof - - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - from assms show ?thesis by (rule fold1_insert_idem_def [OF Min_def]) -qed - -lemma Max_insert [simp]: - assumes "finite A" and "A \ {}" - shows "Max (insert x A) = max x (Max A)" -proof - - interpret ab_semigroup_idem_mult max - by (rule ab_semigroup_idem_mult_max) - from assms show ?thesis by (rule fold1_insert_idem_def [OF Max_def]) -qed - -lemma Min_in [simp]: - assumes "finite A" and "A \ {}" - shows "Min A \ A" -proof - - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - from assms fold1_in show ?thesis by (fastsimp simp: Min_def min_def) -qed - -lemma Max_in [simp]: - assumes "finite A" and "A \ {}" - shows "Max A \ A" -proof - - interpret ab_semigroup_idem_mult max - by (rule ab_semigroup_idem_mult_max) - from assms fold1_in [of A] show ?thesis by (fastsimp simp: Max_def max_def) -qed - -lemma Min_Un: - assumes "finite A" and "A \ {}" and "finite B" and "B \ {}" - shows "Min (A \ B) = min (Min A) (Min B)" -proof - - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - from assms show ?thesis - by (simp add: Min_def fold1_Un2) -qed - -lemma Max_Un: - assumes "finite A" and "A \ {}" and "finite B" and "B \ {}" - shows "Max (A \ B) = max (Max A) (Max B)" -proof - - interpret ab_semigroup_idem_mult max - by (rule ab_semigroup_idem_mult_max) - from assms show ?thesis - by (simp add: Max_def fold1_Un2) -qed - -lemma hom_Min_commute: - assumes "\x y. h (min x y) = min (h x) (h y)" - and "finite N" and "N \ {}" - shows "h (Min N) = Min (h ` N)" -proof - - interpret ab_semigroup_idem_mult min - by (rule ab_semigroup_idem_mult_min) - from assms show ?thesis - by (simp add: Min_def hom_fold1_commute) -qed - -lemma hom_Max_commute: - assumes "\x y. h (max x y) = max (h x) (h y)" - and "finite N" and "N \ {}" - shows "h (Max N) = Max (h ` N)" -proof - - interpret ab_semigroup_idem_mult max - by (rule ab_semigroup_idem_mult_max) - from assms show ?thesis - by (simp add: Max_def hom_fold1_commute [of h]) -qed - -lemma Min_le [simp]: - assumes "finite A" and "x \ A" - shows "Min A \ x" - using assms by (simp add: Min_def min_max.fold1_belowI) - -lemma Max_ge [simp]: - assumes "finite A" and "x \ A" - shows "x \ Max A" -proof - - interpret semilattice_inf "op \" "op >" max - by (rule max_lattice) - from assms show ?thesis by (simp add: Max_def fold1_belowI) -qed - -lemma Min_ge_iff [simp, noatp]: - assumes "finite A" and "A \ {}" - shows "x \ Min A \ (\a\A. x \ a)" - using assms by (simp add: Min_def min_max.below_fold1_iff) - -lemma Max_le_iff [simp, noatp]: - assumes "finite A" and "A \ {}" - shows "Max A \ x \ (\a\A. a \ x)" -proof - - interpret semilattice_inf "op \" "op >" max - by (rule max_lattice) - from assms show ?thesis by (simp add: Max_def below_fold1_iff) -qed - -lemma Min_gr_iff [simp, noatp]: - assumes "finite A" and "A \ {}" - shows "x < Min A \ (\a\A. x < a)" - using assms by (simp add: Min_def strict_below_fold1_iff) - -lemma Max_less_iff [simp, noatp]: - assumes "finite A" and "A \ {}" - shows "Max A < x \ (\a\A. a < x)" -proof - - interpret dual: linorder "op \" "op >" - by (rule dual_linorder) - from assms show ?thesis - by (simp add: Max_def dual.strict_below_fold1_iff [folded dual.dual_max]) -qed - -lemma Min_le_iff [noatp]: - assumes "finite A" and "A \ {}" - shows "Min A \ x \ (\a\A. a \ x)" - using assms by (simp add: Min_def fold1_below_iff) - -lemma Max_ge_iff [noatp]: - assumes "finite A" and "A \ {}" - shows "x \ Max A \ (\a\A. x \ a)" -proof - - interpret dual: linorder "op \" "op >" - by (rule dual_linorder) - from assms show ?thesis - by (simp add: Max_def dual.fold1_below_iff [folded dual.dual_max]) -qed - -lemma Min_less_iff [noatp]: - assumes "finite A" and "A \ {}" - shows "Min A < x \ (\a\A. a < x)" - using assms by (simp add: Min_def fold1_strict_below_iff) - -lemma Max_gr_iff [noatp]: - assumes "finite A" and "A \ {}" - shows "x < Max A \ (\a\A. x < a)" -proof - - interpret dual: linorder "op \" "op >" - by (rule dual_linorder) - from assms show ?thesis - by (simp add: Max_def dual.fold1_strict_below_iff [folded dual.dual_max]) -qed - -lemma Min_eqI: - assumes "finite A" - assumes "\y. y \ A \ y \ x" - and "x \ A" - shows "Min A = x" -proof (rule antisym) - from `x \ A` have "A \ {}" by auto - with assms show "Min A \ x" by simp -next - from assms show "x \ Min A" by simp -qed - -lemma Max_eqI: - assumes "finite A" - assumes "\y. y \ A \ y \ x" - and "x \ A" - shows "Max A = x" -proof (rule antisym) - from `x \ A` have "A \ {}" by auto - with assms show "Max A \ x" by simp -next - from assms show "x \ Max A" by simp -qed - -lemma Min_antimono: - assumes "M \ N" and "M \ {}" and "finite N" - shows "Min N \ Min M" - using assms by (simp add: Min_def fold1_antimono) - -lemma Max_mono: - assumes "M \ N" and "M \ {}" and "finite N" - shows "Max M \ Max N" -proof - - interpret dual: linorder "op \" "op >" - by (rule dual_linorder) - from assms show ?thesis - by (simp add: Max_def dual.fold1_antimono [folded dual.dual_max]) -qed - -lemma finite_linorder_max_induct[consumes 1, case_names empty insert]: - "finite A \ P {} \ - (!!b A. finite A \ ALL a:A. a < b \ P A \ P(insert b A)) - \ P A" -proof (induct rule: finite_psubset_induct) - fix A :: "'a set" - assume IH: "!! B. finite B \ B < A \ P {} \ - (!!b A. finite A \ (\a\A. a P A \ P (insert b A)) - \ P B" - and "finite A" and "P {}" - and step: "!!b A. \finite A; \a\A. a < b; P A\ \ P (insert b A)" - show "P A" - proof (cases "A = {}") - assume "A = {}" thus "P A" using `P {}` by simp - next - let ?B = "A - {Max A}" let ?A = "insert (Max A) ?B" - assume "A \ {}" - with `finite A` have "Max A : A" by auto - hence A: "?A = A" using insert_Diff_single insert_absorb by auto - moreover have "finite ?B" using `finite A` by simp - ultimately have "P ?B" using `P {}` step IH[of ?B] by blast - moreover have "\a\?B. a < Max A" using Max_ge [OF `finite A`] by fastsimp - ultimately show "P A" using A insert_Diff_single step[OF `finite ?B`] by fastsimp - qed -qed - -lemma finite_linorder_min_induct[consumes 1, case_names empty insert]: - "\finite A; P {}; \b A. \finite A; \a\A. b < a; P A\ \ P (insert b A)\ \ P A" -by(rule linorder.finite_linorder_max_induct[OF dual_linorder]) - -end - -context linordered_ab_semigroup_add -begin - -lemma add_Min_commute: - fixes k - assumes "finite N" and "N \ {}" - shows "k + Min N = Min {k + m | m. m \ N}" -proof - - have "\x y. k + min x y = min (k + x) (k + y)" - by (simp add: min_def not_le) - (blast intro: antisym less_imp_le add_left_mono) - with assms show ?thesis - using hom_Min_commute [of "plus k" N] - by simp (blast intro: arg_cong [where f = Min]) -qed - -lemma add_Max_commute: - fixes k - assumes "finite N" and "N \ {}" - shows "k + Max N = Max {k + m | m. m \ N}" -proof - - have "\x y. k + max x y = max (k + x) (k + y)" - by (simp add: max_def not_le) - (blast intro: antisym less_imp_le add_left_mono) - with assms show ?thesis - using hom_Max_commute [of "plus k" N] - by simp (blast intro: arg_cong [where f = Max]) -qed - -end - -context linordered_ab_group_add -begin - -lemma minus_Max_eq_Min [simp]: - "finite S \ S \ {} \ - (Max S) = Min (uminus ` S)" - by (induct S rule: finite_ne_induct) (simp_all add: minus_max_eq_min) - -lemma minus_Min_eq_Max [simp]: - "finite S \ S \ {} \ - (Min S) = Max (uminus ` S)" - by (induct S rule: finite_ne_induct) (simp_all add: minus_min_eq_max) - -end - - subsection {* Expressing set operations via @{const fold} *} lemma (in fun_left_comm) fun_left_comm_apply: @@ -3445,32 +1433,6 @@ shows "Sup A = fold sup bot A" using assms sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2) -lemma Inf_fin_Inf: - assumes "finite A" and "A \ {}" - shows "\\<^bsub>fin\<^esub>A = Inf A" -proof - - interpret ab_semigroup_idem_mult inf - by (rule ab_semigroup_idem_mult_inf) - from `A \ {}` obtain b B where "A = insert b B" by auto - moreover with `finite A` have "finite B" by simp - ultimately show ?thesis - by (simp add: Inf_fin_def fold1_eq_fold_idem inf_Inf_fold_inf [symmetric]) - (simp add: Inf_fold_inf) -qed - -lemma Sup_fin_Sup: - assumes "finite A" and "A \ {}" - shows "\\<^bsub>fin\<^esub>A = Sup A" -proof - - interpret ab_semigroup_idem_mult sup - by (rule ab_semigroup_idem_mult_sup) - from `A \ {}` obtain b B where "A = insert b B" by auto - moreover with `finite A` have "finite B" by simp - ultimately show ?thesis - by (simp add: Sup_fin_def fold1_eq_fold_idem sup_Sup_fold_sup [symmetric]) - (simp add: Sup_fold_sup) -qed - lemma inf_INFI_fold_inf: assumes "finite A" shows "inf B (INFI A f) = fold (\A. inf (f A)) B A" (is "?inf = ?fold") @@ -3505,4 +1467,127 @@ end + +subsection {* Locales as mini-packages *} + +locale folding = + fixes f :: "'a \ 'b \ 'b" + fixes F :: "'a set \ 'b \ 'b" + assumes commute_comp: "f x \ f y = f y \ f x" + assumes eq_fold: "F A s = Finite_Set.fold f s A" +begin + +lemma fun_left_commute: + "f x (f y s) = f y (f x s)" + using commute_comp [of x y] by (simp add: expand_fun_eq) + +lemma fun_left_comm: + "fun_left_comm f" +proof +qed (fact fun_left_commute) + +lemma empty [simp]: + "F {} = id" + by (simp add: eq_fold expand_fun_eq) + +lemma insert [simp]: + assumes "finite A" and "x \ A" + shows "F (insert x A) = F A \ f x" +proof - + interpret fun_left_comm f by (fact fun_left_comm) + from fold_insert2 assms + have "\s. Finite_Set.fold f s (insert x A) = Finite_Set.fold f (f x s) A" . + then show ?thesis by (simp add: eq_fold expand_fun_eq) +qed + +lemma remove: + assumes "finite A" and "x \ A" + shows "F A = F (A - {x}) \ f x" +proof - + from `x \ A` obtain B where A: "A = insert x B" and "x \ B" + by (auto dest: mk_disjoint_insert) + moreover from `finite A` this have "finite B" by simp + ultimately show ?thesis by simp +qed + +lemma insert_remove: + assumes "finite A" + shows "F (insert x A) = F (A - {x}) \ f x" +proof (cases "x \ A") + case True with assms show ?thesis by (simp add: remove insert_absorb) +next + case False with assms show ?thesis by simp +qed + +lemma commute_comp': + assumes "finite A" + shows "f x \ F A = F A \ f x" +proof (rule ext) + fix s + from assms show "(f x \ F A) s = (F A \ f x) s" + by (induct A arbitrary: s) (simp_all add: fun_left_commute) +qed + +lemma fun_left_commute': + assumes "finite A" + shows "f x (F A s) = F A (f x s)" + using commute_comp' assms by (simp add: expand_fun_eq) + +lemma union: + assumes "finite A" and "finite B" + and "A \ B = {}" + shows "F (A \ B) = F A \ F B" +using `finite A` `A \ B = {}` proof (induct A) + case empty show ?case by simp +next + case (insert x A) + then have "A \ B = {}" by auto + with insert(3) have "F (A \ B) = F A \ F B" . + moreover from insert have "x \ B" by simp + moreover from `finite A` `finite B` have fin: "finite (A \ B)" by simp + moreover from `x \ A` `x \ B` have "x \ A \ B" by simp + ultimately show ?case by (simp add: fun_left_commute') +qed + end + +locale folding_idem = folding + + assumes idem_comp: "f x \ f x = f x" +begin + +declare insert [simp del] + +lemma fun_idem: + "f x (f x s) = f x s" + using idem_comp [of x] by (simp add: expand_fun_eq) + +lemma fun_left_comm_idem: + "fun_left_comm_idem f" +proof +qed (fact fun_left_commute fun_idem)+ + +lemma insert_idem [simp]: + assumes "finite A" + shows "F (insert x A) = F A \ f x" +proof - + interpret fun_left_comm_idem f by (fact fun_left_comm_idem) + from fold_insert_idem2 assms + have "\s. Finite_Set.fold f s (insert x A) = Finite_Set.fold f (f x s) A" . + then show ?thesis by (simp add: eq_fold expand_fun_eq) +qed + +lemma union_idem: + assumes "finite A" and "finite B" + shows "F (A \ B) = F A \ F B" +using `finite A` proof (induct A) + case empty show ?case by simp +next + case (insert x A) + from insert(3) have "F (A \ B) = F A \ F B" . + moreover from `finite A` `finite B` have fin: "finite (A \ B)" by simp + ultimately show ?case by (simp add: fun_left_commute') +qed + +end + +end diff -r abf91fba0a70 -r 99b6152aedf5 src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Wed Mar 10 08:04:50 2010 +0100 +++ b/src/HOL/IsaMakefile Wed Mar 10 16:53:27 2010 +0100 @@ -142,6 +142,7 @@ @$(ISABELLE_TOOL) usedir -b -f base.ML -d false -g false $(OUT)/Pure HOL-Base PLAIN_DEPENDENCIES = $(BASE_DEPENDENCIES)\ + Big_Operators.thy \ Complete_Lattice.thy \ Datatype.thy \ Extraction.thy \ diff -r abf91fba0a70 -r 99b6152aedf5 src/HOL/Option.thy --- a/src/HOL/Option.thy Wed Mar 10 08:04:50 2010 +0100 +++ b/src/HOL/Option.thy Wed Mar 10 16:53:27 2010 +0100 @@ -5,7 +5,7 @@ header {* Datatype option *} theory Option -imports Datatype Finite_Set +imports Datatype begin datatype 'a option = None | Some 'a @@ -33,13 +33,6 @@ lemma UNIV_option_conv: "UNIV = insert None (range Some)" by(auto intro: classical) -lemma finite_option_UNIV[simp]: - "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)" -by(auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some) - -instance option :: (finite) finite proof -qed (simp add: UNIV_option_conv) - subsubsection {* Operations *} diff -r abf91fba0a70 -r 99b6152aedf5 src/HOL/Wellfounded.thy --- a/src/HOL/Wellfounded.thy Wed Mar 10 08:04:50 2010 +0100 +++ b/src/HOL/Wellfounded.thy Wed Mar 10 16:53:27 2010 +0100 @@ -8,7 +8,7 @@ header {*Well-founded Recursion*} theory Wellfounded -imports Finite_Set Transitive_Closure +imports Transitive_Closure Big_Operators uses ("Tools/Function/size.ML") begin