# HG changeset patch # User nipkow # Date 1389169214 -3600 # Node ID 9a52ee8cae9bc791356504e1817339c39fde56a8 # Parent 1276861f272437681907f5879ff3b4d7b25f0c62 tuned diff -r 1276861f2724 -r 9a52ee8cae9b src/HOL/IMP/Abs_Int0.thy --- a/src/HOL/IMP/Abs_Int0.thy Tue Jan 07 23:55:51 2014 +0100 +++ b/src/HOL/IMP/Abs_Int0.thy Wed Jan 08 09:20:14 2014 +0100 @@ -219,8 +219,7 @@ lemma gamma_Step_subcomm: assumes "!!x e S. f1 x e (\\<^sub>o S) \ \\<^sub>o (f2 x e S)" "!!b S. g1 b (\\<^sub>o S) \ \\<^sub>o (g2 b S)" shows "Step f1 g1 (\\<^sub>o S) (\\<^sub>c C) \ \\<^sub>c (Step f2 g2 S C)" -proof(induction C arbitrary: S) -qed (auto simp: mono_gamma_o assms) +by (induction C arbitrary: S) (auto simp: mono_gamma_o assms) lemma step_step': "step (\\<^sub>o S) (\\<^sub>c C) \ \\<^sub>c (step' S C)" unfolding step_def step'_def