# HG changeset patch # User huffman # Date 1333087912 -7200 # Node ID 9a91b163bb719d2aa654d6a53d7fe0fb0168784f # Parent 9368aa81451804e09ad72c3cdd13e5cc359cf2d0 move lemmas from Nat_Numeral.thy to Nat.thy diff -r 9368aa814518 -r 9a91b163bb71 src/HOL/Nat.thy --- a/src/HOL/Nat.thy Fri Mar 30 08:10:28 2012 +0200 +++ b/src/HOL/Nat.thy Fri Mar 30 08:11:52 2012 +0200 @@ -252,6 +252,12 @@ apply (simp add:o_def) done +lemma Suc_eq_plus1: "Suc n = n + 1" + unfolding One_nat_def by simp + +lemma Suc_eq_plus1_left: "Suc n = 1 + n" + unfolding One_nat_def by simp + subsubsection {* Difference *} diff -r 9368aa814518 -r 9a91b163bb71 src/HOL/Nat_Numeral.thy --- a/src/HOL/Nat_Numeral.thy Fri Mar 30 08:10:28 2012 +0200 +++ b/src/HOL/Nat_Numeral.thy Fri Mar 30 08:11:52 2012 +0200 @@ -31,12 +31,6 @@ subsubsection{*Arith *} -lemma Suc_eq_plus1: "Suc n = n + 1" - unfolding One_nat_def by simp - -lemma Suc_eq_plus1_left: "Suc n = 1 + n" - unfolding One_nat_def by simp - (* These two can be useful when m = numeral... *) lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"