# HG changeset patch # User hoelzl # Date 1291298942 -3600 # Node ID 9a9d33f6fb46bf842742194f3de40afaad2ebd51 # Parent f5a74b17a69e35366ca66b403b64ceea66b3f49c generalized simple_functionD diff -r f5a74b17a69e -r 9a9d33f6fb46 src/HOL/Probability/Lebesgue_Integration.thy --- a/src/HOL/Probability/Lebesgue_Integration.thy Thu Dec 02 14:57:50 2010 +0100 +++ b/src/HOL/Probability/Lebesgue_Integration.thy Thu Dec 02 15:09:02 2010 +0100 @@ -43,19 +43,14 @@ lemma (in sigma_algebra) simple_functionD: assumes "simple_function g" - shows "finite (g ` space M)" and "g -` {x} \ space M \ sets M" + shows "finite (g ` space M)" and "g -` X \ space M \ sets M" proof - show "finite (g ` space M)" using assms unfolding simple_function_def by auto - show "g -` {x} \ space M \ sets M" - proof cases - assume "x \ g`space M" then show ?thesis - using assms unfolding simple_function_def by auto - next - assume "x \ g`space M" - then have "g -` {x} \ space M = {}" by auto - then show ?thesis by auto - qed + have "g -` X \ space M = g -` (X \ g`space M) \ space M" by auto + also have "\ = (\x\X \ g`space M. g-`{x} \ space M)" by auto + finally show "g -` X \ space M \ sets M" using assms + by (auto intro!: finite_UN simp del: UN_simps simp: simple_function_def) qed lemma (in sigma_algebra) simple_function_indicator_representation: @@ -2309,7 +2304,7 @@ qed lemma (in finite_measure_space) simple_function_finite[simp, intro]: "simple_function f" - unfolding simple_function_def sets_eq_Pow using finite_space by auto + unfolding simple_function_def using finite_space by auto lemma (in finite_measure_space) borel_measurable_finite[intro, simp]: "f \ borel_measurable M" by (auto intro: borel_measurable_simple_function) @@ -2320,7 +2315,7 @@ have *: "positive_integral f = positive_integral (\x. \y\space M. f y * indicator {y} x)" by (auto intro!: positive_integral_cong simp add: indicator_def if_distrib setsum_cases[OF finite_space]) show ?thesis unfolding * using borel_measurable_finite[of f] - by (simp add: positive_integral_setsum positive_integral_cmult_indicator sets_eq_Pow) + by (simp add: positive_integral_setsum positive_integral_cmult_indicator) qed lemma (in finite_measure_space) integral_finite_singleton: @@ -2332,9 +2327,9 @@ "positive_integral (\x. Real (- f x)) = (\x \ space M. Real (- f x) * \ {x})" unfolding positive_integral_finite_eq_setsum by auto show "integrable f" using finite_space finite_measure - by (simp add: setsum_\ integrable_def sets_eq_Pow) + by (simp add: setsum_\ integrable_def) show ?I using finite_measure - apply (simp add: integral_def sets_eq_Pow real_of_pinfreal_setsum[symmetric] + apply (simp add: integral_def real_of_pinfreal_setsum[symmetric] real_of_pinfreal_mult[symmetric] setsum_subtractf[symmetric]) by (rule setsum_cong) (simp_all split: split_if) qed