# HG changeset patch # User nipkow # Date 1427096754 -3600 # Node ID 9ad96e97e72daa41949f6dc15c2859844359fdde # Parent f54af3307334cbbdbdf2a9599109e188427349fe BT subsumed by Library/Tree diff -r f54af3307334 -r 9ad96e97e72d src/HOL/ROOT --- a/src/HOL/ROOT Mon Mar 23 07:36:27 2015 +0100 +++ b/src/HOL/ROOT Mon Mar 23 08:45:54 2015 +0100 @@ -552,7 +552,6 @@ Intuitionistic CTL Arith_Examples - BT Tree23 Bubblesort MergeSort diff -r f54af3307334 -r 9ad96e97e72d src/HOL/ex/BT.thy --- a/src/HOL/ex/BT.thy Mon Mar 23 07:36:27 2015 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,160 +0,0 @@ -(* Title: HOL/ex/BT.thy - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1995 University of Cambridge - -Binary trees -*) - -section {* Binary trees *} - -theory BT imports Main begin - -datatype 'a bt = - Lf - | Br 'a "'a bt" "'a bt" - -primrec n_nodes :: "'a bt => nat" where - "n_nodes Lf = 0" -| "n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)" - -primrec n_leaves :: "'a bt => nat" where - "n_leaves Lf = Suc 0" -| "n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2" - -primrec depth :: "'a bt => nat" where - "depth Lf = 0" -| "depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))" - -primrec reflect :: "'a bt => 'a bt" where - "reflect Lf = Lf" -| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)" - -primrec bt_map :: "('a => 'b) => ('a bt => 'b bt)" where - "bt_map f Lf = Lf" -| "bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)" - -primrec preorder :: "'a bt => 'a list" where - "preorder Lf = []" -| "preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)" - -primrec inorder :: "'a bt => 'a list" where - "inorder Lf = []" -| "inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)" - -primrec postorder :: "'a bt => 'a list" where - "postorder Lf = []" -| "postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]" - -primrec append :: "'a bt => 'a bt => 'a bt" where - "append Lf t = t" -| "append (Br a t1 t2) t = Br a (append t1 t) (append t2 t)" - -text {* \medskip BT simplification *} - -lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t" - apply (induct t) - apply auto - done - -lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t" - apply (induct t) - apply auto - done - -lemma depth_reflect: "depth (reflect t) = depth t" - apply (induct t) - apply auto - done - -text {* - The famous relationship between the numbers of leaves and nodes. -*} - -lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)" - apply (induct t) - apply auto - done - -lemma reflect_reflect_ident: "reflect (reflect t) = t" - apply (induct t) - apply auto - done - -lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)" - apply (induct t) - apply simp_all - done - -lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)" - apply (induct t) - apply simp_all - done - -lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)" - apply (induct t) - apply simp_all - done - -lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)" - apply (induct t) - apply simp_all - done - -lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t" - apply (induct t) - apply simp_all - done - -lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t" - apply (induct t) - apply (simp_all add: distrib_right) - done - -lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)" - apply (induct t) - apply simp_all - done - -lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)" - apply (induct t) - apply simp_all - done - -lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)" - apply (induct t) - apply simp_all - done - -text {* - Analogues of the standard properties of the append function for lists. -*} - -lemma append_assoc [simp]: - "append (append t1 t2) t3 = append t1 (append t2 t3)" - apply (induct t1) - apply simp_all - done - -lemma append_Lf2 [simp]: "append t Lf = t" - apply (induct t) - apply simp_all - done - -lemma depth_append [simp]: "depth (append t1 t2) = depth t1 + depth t2" - apply (induct t1) - apply (simp_all add: max_add_distrib_left) - done - -lemma n_leaves_append [simp]: - "n_leaves (append t1 t2) = n_leaves t1 * n_leaves t2" - apply (induct t1) - apply (simp_all add: distrib_right) - done - -lemma bt_map_append: - "bt_map f (append t1 t2) = append (bt_map f t1) (bt_map f t2)" - apply (induct t1) - apply simp_all - done - -end