# HG changeset patch # User huffman # Date 1315844461 25200 # Node ID 9ba11d41cd1f28c53adc16bf92679cb75c5aea44 # Parent ed5ddf9fcc7710f435ce18e969e705eedb93ac6b move lemmas about complex number 'i' to Complex.thy and Library/Inner_Product.thy diff -r ed5ddf9fcc77 -r 9ba11d41cd1f src/HOL/Complex.thy --- a/src/HOL/Complex.thy Mon Sep 12 09:57:33 2011 -0400 +++ b/src/HOL/Complex.thy Mon Sep 12 09:21:01 2011 -0700 @@ -412,6 +412,9 @@ lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \ y = 1)" by (simp add: i_def) +lemma norm_ii [simp]: "norm ii = 1" + by (simp add: i_def) + lemma complex_i_not_zero [simp]: "ii \ 0" by (simp add: complex_eq_iff) diff -r ed5ddf9fcc77 -r 9ba11d41cd1f src/HOL/Library/Inner_Product.thy --- a/src/HOL/Library/Inner_Product.thy Mon Sep 12 09:57:33 2011 -0400 +++ b/src/HOL/Library/Inner_Product.thy Mon Sep 12 09:21:01 2011 -0700 @@ -240,6 +240,18 @@ end +lemma complex_inner_1 [simp]: "inner 1 x = Re x" + unfolding inner_complex_def by simp + +lemma complex_inner_1_right [simp]: "inner x 1 = Re x" + unfolding inner_complex_def by simp + +lemma complex_inner_ii_left [simp]: "inner ii x = Im x" + unfolding inner_complex_def by simp + +lemma complex_inner_ii_right [simp]: "inner x ii = Im x" + unfolding inner_complex_def by simp + subsection {* Gradient derivative *} diff -r ed5ddf9fcc77 -r 9ba11d41cd1f src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Sep 12 09:57:33 2011 -0400 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Mon Sep 12 09:21:01 2011 -0700 @@ -275,23 +275,6 @@ subsubsection {* Type @{typ complex} *} - (* TODO: move these to Complex.thy/Inner_Product.thy *) - -lemma norm_ii [simp]: "norm ii = 1" - unfolding i_def by simp - -lemma complex_inner_1 [simp]: "inner 1 x = Re x" - unfolding inner_complex_def by simp - -lemma complex_inner_1_right [simp]: "inner x 1 = Re x" - unfolding inner_complex_def by simp - -lemma complex_inner_ii_left [simp]: "inner ii x = Im x" - unfolding inner_complex_def by simp - -lemma complex_inner_ii_right [simp]: "inner x ii = Im x" - unfolding inner_complex_def by simp - instantiation complex :: euclidean_space begin