# HG changeset patch # User wenzelm # Date 1159479752 -7200 # Node ID 9bc632ae588f3dd00a833a88bab056a51792a6e1 # Parent 9913d3bc3d1720c139f2476bc08ce03179244728 removed obsolete Real/document/root.tex; removed obsolete Isar_examples/Cantor.ML; renamed Real/Float.ML to Real/float.ML; diff -r 9913d3bc3d17 -r 9bc632ae588f src/HOL/IsaMakefile --- a/src/HOL/IsaMakefile Thu Sep 28 23:42:30 2006 +0200 +++ b/src/HOL/IsaMakefile Thu Sep 28 23:42:32 2006 +0200 @@ -162,11 +162,10 @@ HOL-Complex: HOL $(OUT)/HOL-Complex $(OUT)/HOL-Complex: $(OUT)/HOL Complex/ROOT.ML Library/Zorn.thy \ - Real/ContNotDenum.thy Real/Ferrante_Rackoff.thy Real/Float.ML \ + Real/ContNotDenum.thy Real/Ferrante_Rackoff.thy Real/float.ML \ Real/Float.thy Real/Lubs.thy Real/PReal.thy Real/RComplete.thy \ Real/ROOT.ML Real/Rational.thy Real/Real.thy Real/RealDef.thy \ - Real/RealPow.thy Real/RealVector.thy Real/document/root.tex \ - Real/ferrante_rackoff_proof.ML \ + Real/RealPow.thy Real/RealVector.thy Real/ferrante_rackoff_proof.ML \ Real/ferrante_rackoff.ML Real/rat_arith.ML Real/real_arith.ML \ Hyperreal/StarDef.thy Hyperreal/StarClasses.thy \ Hyperreal/EvenOdd.thy Hyperreal/Fact.thy Hyperreal/HLog.thy \ @@ -665,7 +664,7 @@ HOL-Isar_examples: HOL $(LOG)/HOL-Isar_examples.gz $(LOG)/HOL-Isar_examples.gz: $(OUT)/HOL Isar_examples/BasicLogic.thy \ - Isar_examples/Cantor.ML Isar_examples/Cantor.thy Isar_examples/Drinker.thy \ + Isar_examples/Cantor.thy Isar_examples/Drinker.thy \ Isar_examples/ExprCompiler.thy Isar_examples/Fibonacci.thy \ Isar_examples/Group.thy Isar_examples/Hoare.thy Isar_examples/HoareEx.thy \ Isar_examples/KnasterTarski.thy Isar_examples/MutilatedCheckerboard.thy \ diff -r 9913d3bc3d17 -r 9bc632ae588f src/HOL/Real/Float.ML --- a/src/HOL/Real/Float.ML Thu Sep 28 23:42:30 2006 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,510 +0,0 @@ -(* Title: HOL/Real/Float.ML - ID: $Id$ - Author: Steven Obua -*) - -structure ExactFloatingPoint : -sig - exception Destruct_floatstr of string - val destruct_floatstr : (char -> bool) -> (char -> bool) -> string -> bool * string * string * bool * string - - exception Floating_point of string - - type floatrep = IntInf.int * IntInf.int - val approx_dec_by_bin : IntInf.int -> floatrep -> floatrep * floatrep - val approx_decstr_by_bin : int -> string -> floatrep * floatrep -end -= -struct - -exception Destruct_floatstr of string; - -fun destruct_floatstr isDigit isExp number = - let - val numlist = filter (not o Char.isSpace) (String.explode number) - - fun countsigns ((#"+")::cs) = countsigns cs - | countsigns ((#"-")::cs) = - let - val (positive, rest) = countsigns cs - in - (not positive, rest) - end - | countsigns cs = (true, cs) - - fun readdigits [] = ([], []) - | readdigits (q as c::cs) = - if (isDigit c) then - let - val (digits, rest) = readdigits cs - in - (c::digits, rest) - end - else - ([], q) - - fun readfromexp_helper cs = - let - val (positive, rest) = countsigns cs - val (digits, rest') = readdigits rest - in - case rest' of - [] => (positive, digits) - | _ => raise (Destruct_floatstr number) - end - - fun readfromexp [] = (true, []) - | readfromexp (c::cs) = - if isExp c then - readfromexp_helper cs - else - raise (Destruct_floatstr number) - - fun readfromdot [] = ([], readfromexp []) - | readfromdot ((#".")::cs) = - let - val (digits, rest) = readdigits cs - val exp = readfromexp rest - in - (digits, exp) - end - | readfromdot cs = readfromdot ((#".")::cs) - - val (positive, numlist) = countsigns numlist - val (digits1, numlist) = readdigits numlist - val (digits2, exp) = readfromdot numlist - in - (positive, String.implode digits1, String.implode digits2, fst exp, String.implode (snd exp)) - end - -type floatrep = IntInf.int * IntInf.int - -exception Floating_point of string; - -val ln2_10 = (Math.ln 10.0)/(Math.ln 2.0) - -fun intmul a b = IntInf.* (a,b) -fun intsub a b = IntInf.- (a,b) -fun intadd a b = IntInf.+ (a,b) -fun intpow a b = IntInf.pow (a, IntInf.toInt b); -fun intle a b = IntInf.<= (a, b); -fun intless a b = IntInf.< (a, b); -fun intneg a = IntInf.~ a; -val zero = IntInf.fromInt 0; -val one = IntInf.fromInt 1; -val two = IntInf.fromInt 2; -val ten = IntInf.fromInt 10; -val five = IntInf.fromInt 5; - -fun find_most_significant q r = - let - fun int2real i = - case Real.fromString (IntInf.toString i) of - SOME r => r - | NONE => raise (Floating_point "int2real") - fun subtract (q, r) (q', r') = - if intle r r' then - (intsub q (intmul q' (intpow ten (intsub r' r))), r) - else - (intsub (intmul q (intpow ten (intsub r r'))) q', r') - fun bin2dec d = - if intle zero d then - (intpow two d, zero) - else - (intpow five (intneg d), d) - - val L = IntInf.fromInt (Real.floor (int2real (IntInf.fromInt (IntInf.log2 q)) + (int2real r) * ln2_10)) - val L1 = intadd L one - - val (q1, r1) = subtract (q, r) (bin2dec L1) - in - if intle zero q1 then - let - val (q2, r2) = subtract (q, r) (bin2dec (intadd L1 one)) - in - if intle zero q2 then - raise (Floating_point "find_most_significant") - else - (L1, (q1, r1)) - end - else - let - val (q0, r0) = subtract (q, r) (bin2dec L) - in - if intle zero q0 then - (L, (q0, r0)) - else - raise (Floating_point "find_most_significant") - end - end - -fun approx_dec_by_bin n (q,r) = - let - fun addseq acc d' [] = acc - | addseq acc d' (d::ds) = addseq (intadd acc (intpow two (intsub d d'))) d' ds - - fun seq2bin [] = (zero, zero) - | seq2bin (d::ds) = (intadd (addseq zero d ds) one, d) - - fun approx d_seq d0 precision (q,r) = - if q = zero then - let val x = seq2bin d_seq in - (x, x) - end - else - let - val (d, (q', r')) = find_most_significant q r - in - if intless precision (intsub d0 d) then - let - val d' = intsub d0 precision - val x1 = seq2bin (d_seq) - val x2 = (intadd (intmul (fst x1) (intpow two (intsub (snd x1) d'))) one, d') (* = seq2bin (d'::d_seq) *) - in - (x1, x2) - end - else - approx (d::d_seq) d0 precision (q', r') - end - - fun approx_start precision (q, r) = - if q = zero then - ((zero, zero), (zero, zero)) - else - let - val (d, (q', r')) = find_most_significant q r - in - if intle precision zero then - let - val x1 = seq2bin [d] - in - if q' = zero then - (x1, x1) - else - (x1, seq2bin [intadd d one]) - end - else - approx [d] d precision (q', r') - end - in - if intle zero q then - approx_start n (q,r) - else - let - val ((a1,b1), (a2, b2)) = approx_start n (intneg q, r) - in - ((intneg a2, b2), (intneg a1, b1)) - end - end - -fun approx_decstr_by_bin n decstr = - let - fun str2int s = case IntInf.fromString s of SOME x => x | NONE => zero - fun signint p x = if p then x else intneg x - - val (p, d1, d2, ep, e) = destruct_floatstr Char.isDigit (fn e => e = #"e" orelse e = #"E") decstr - val s = IntInf.fromInt (size d2) - - val q = signint p (intadd (intmul (str2int d1) (intpow ten s)) (str2int d2)) - val r = intsub (signint ep (str2int e)) s - in - approx_dec_by_bin (IntInf.fromInt n) (q,r) - end - -end; - -structure FloatArith = -struct - -type float = IntInf.int * IntInf.int - -val izero = IntInf.fromInt 0 -val ione = IntInf.fromInt 1 -val imone = IntInf.fromInt ~1 -val itwo = IntInf.fromInt 2 -fun imul a b = IntInf.* (a,b) -fun isub a b = IntInf.- (a,b) -fun iadd a b = IntInf.+ (a,b) - -val floatzero = (izero, izero) - -fun positive_part (a,b) = - (if IntInf.< (a,izero) then izero else a, b) - -fun negative_part (a,b) = - (if IntInf.< (a,izero) then a else izero, b) - -fun is_negative (a,b) = - if IntInf.< (a, izero) then true else false - -fun is_positive (a,b) = - if IntInf.< (izero, a) then true else false - -fun is_zero (a,b) = - if a = izero then true else false - -fun ipow2 a = IntInf.pow ((IntInf.fromInt 2), IntInf.toInt a) - -fun add (a1, b1) (a2, b2) = - if IntInf.< (b1, b2) then - (iadd a1 (imul a2 (ipow2 (isub b2 b1))), b1) - else - (iadd (imul a1 (ipow2 (isub b1 b2))) a2, b2) - -fun sub (a1, b1) (a2, b2) = - if IntInf.< (b1, b2) then - (isub a1 (imul a2 (ipow2 (isub b2 b1))), b1) - else - (isub (imul a1 (ipow2 (isub b1 b2))) a2, b2) - -fun neg (a, b) = (IntInf.~ a, b) - -fun is_equal a b = is_zero (sub a b) - -fun is_less a b = is_negative (sub a b) - -fun max a b = if is_less a b then b else a - -fun min a b = if is_less a b then a else b - -fun abs a = if is_negative a then neg a else a - -fun mul (a1, b1) (a2, b2) = (imul a1 a2, iadd b1 b2) - -end; - - -structure Float: -sig - type float = FloatArith.float - type floatfunc = float * float -> float * float - - val mk_intinf : typ -> IntInf.int -> term - val mk_float : float -> term - - exception Dest_intinf; - val dest_intinf : term -> IntInf.int - val dest_nat : term -> IntInf.int - - exception Dest_float; - val dest_float : term -> float - - val float_const : term - - val float_add_const : term - val float_diff_const : term - val float_uminus_const : term - val float_pprt_const : term - val float_nprt_const : term - val float_abs_const : term - val float_mult_const : term - val float_le_const : term - - val nat_le_const : term - val nat_less_const : term - val nat_eq_const : term - - val approx_float : int -> floatfunc -> string -> term * term - - val sign_term : term -> cterm - -(* exception Float_op_oracle_data of term - exception Nat_op_oracle_data of term - - val float_op_oracle : Sign.sg * exn -> term - val nat_op_oracle : Sign.sg * exn -> term - - val invoke_float_op : term -> thm - val invoke_nat_op : term -> thm*) -end -= -struct - -structure Inttab = TableFun(type key = int val ord = (rev_order o int_ord)); - -type float = IntInf.int*IntInf.int -type floatfunc = float*float -> float*float - -val th = theory "Float" -val sg = sign_of th - -val float_const = Const ("Float.float", HOLogic.mk_prodT (HOLogic.intT, HOLogic.intT) --> HOLogic.realT) - -val float_add_const = Const ("HOL.plus", HOLogic.realT --> HOLogic.realT --> HOLogic.realT) -val float_diff_const = Const ("HOL.minus", HOLogic.realT --> HOLogic.realT --> HOLogic.realT) -val float_mult_const = Const ("HOL.times", HOLogic.realT --> HOLogic.realT --> HOLogic.realT) -val float_uminus_const = Const ("HOL.uminus", HOLogic.realT --> HOLogic.realT) -val float_abs_const = Const ("HOL.abs", HOLogic.realT --> HOLogic.realT) -val float_le_const = Const ("Orderings.less_eq", HOLogic.realT --> HOLogic.realT --> HOLogic.boolT) -val float_pprt_const = Const ("OrderedGroup.pprt", HOLogic.realT --> HOLogic.realT) -val float_nprt_const = Const ("OrderedGroup.nprt", HOLogic.realT --> HOLogic.realT) - -val nat_le_const = Const ("Orderings.less_eq", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT) -val nat_less_const = Const ("Orderings.less", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT) -val nat_eq_const = Const ("op =", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT) - -val zero = FloatArith.izero -val minus_one = FloatArith.imone -val two = FloatArith.itwo - -exception Dest_intinf; -exception Dest_float; - -fun mk_intinf ty n = - let - fun mk_bit n = if n = zero then HOLogic.B0_const else HOLogic.B1_const - fun bin_of n = - if n = zero then HOLogic.pls_const - else if n = minus_one then HOLogic.min_const - else let - val (q,r) = IntInf.divMod (n, two) - in - HOLogic.bit_const $ bin_of q $ mk_bit r - end - in - HOLogic.number_of_const ty $ (bin_of n) - end - -fun dest_intinf n = - let - fun dest_bit n = - case n of - Const ("Numeral.bit.B0", _) => FloatArith.izero - | Const ("Numeral.bit.B1", _) => FloatArith.ione - | _ => raise Dest_intinf - - fun int_of n = - case n of - Const ("Numeral.Pls", _) => FloatArith.izero - | Const ("Numeral.Min", _) => FloatArith.imone - | Const ("Numeral.Bit", _) $ q $ r => FloatArith.iadd (FloatArith.imul (int_of q) FloatArith.itwo) (dest_bit r) - | _ => raise Dest_intinf - in - case n of - Const ("Numeral.number_of", _) $ n' => int_of n' - | Const ("Numeral0", _) => FloatArith.izero - | Const ("Numeral1", _) => FloatArith.ione - | _ => raise Dest_intinf - end - -fun mk_float (a,b) = - float_const $ (HOLogic.mk_prod ((mk_intinf HOLogic.intT a), (mk_intinf HOLogic.intT b))) - -fun dest_float f = - case f of - (Const ("Float.float", _) $ (Const ("Pair", _) $ a $ b)) => (dest_intinf a, dest_intinf b) - | Const ("Numeral.number_of",_) $ a => (dest_intinf f, 0) - | Const ("Numeral0", _) => (FloatArith.izero, FloatArith.izero) - | Const ("Numeral1", _) => (FloatArith.ione, FloatArith.izero) - | _ => raise Dest_float - -fun dest_nat n = - let - val v = dest_intinf n - in - if IntInf.< (v, FloatArith.izero) then - FloatArith.izero - else - v - end - -fun approx_float prec f value = - let - val interval = ExactFloatingPoint.approx_decstr_by_bin prec value - val (flower, fupper) = f interval - in - (mk_float flower, mk_float fupper) - end - -fun sign_term t = cterm_of sg t - -(*exception Float_op_oracle_data of term; - -fun float_op_oracle (sg, exn as Float_op_oracle_data t) = - Logic.mk_equals (t, - case t of - f $ a $ b => - let - val a' = dest_float a - val b' = dest_float b - in - if f = float_add_const then - mk_float (FloatArith.add a' b') - else if f = float_diff_const then - mk_float (FloatArith.sub a' b') - else if f = float_mult_const then - mk_float (FloatArith.mul a' b') - else if f = float_le_const then - (if FloatArith.is_less b' a' then - HOLogic.false_const - else - HOLogic.true_const) - else raise exn - end - | f $ a => - let - val a' = dest_float a - in - if f = float_uminus_const then - mk_float (FloatArith.neg a') - else if f = float_abs_const then - mk_float (FloatArith.abs a') - else if f = float_pprt_const then - mk_float (FloatArith.positive_part a') - else if f = float_nprt_const then - mk_float (FloatArith.negative_part a') - else - raise exn - end - | _ => raise exn - ) -val th = ref ([]: theory list) -val sg = ref ([]: Sign.sg list) - -fun invoke_float_op c = - let - val th = (if length(!th) = 0 then th := [theory "MatrixLP"] else (); hd (!th)) - val sg = (if length(!sg) = 0 then sg := [sign_of th] else (); hd (!sg)) - in - invoke_oracle th "float_op" (sg, Float_op_oracle_data c) - end - -exception Nat_op_oracle_data of term; - -fun nat_op_oracle (sg, exn as Nat_op_oracle_data t) = - Logic.mk_equals (t, - case t of - f $ a $ b => - let - val a' = dest_nat a - val b' = dest_nat b - in - if f = nat_le_const then - (if IntInf.<= (a', b') then - HOLogic.true_const - else - HOLogic.false_const) - else if f = nat_eq_const then - (if a' = b' then - HOLogic.true_const - else - HOLogic.false_const) - else if f = nat_less_const then - (if IntInf.< (a', b') then - HOLogic.true_const - else - HOLogic.false_const) - else - raise exn - end - | _ => raise exn) - -fun invoke_nat_op c = - let - val th = (if length (!th) = 0 then th := [theory "MatrixLP"] else (); hd (!th)) - val sg = (if length (!sg) = 0 then sg := [sign_of th] else (); hd (!sg)) - in - invoke_oracle th "nat_op" (sg, Nat_op_oracle_data c) - end -*) -end; diff -r 9913d3bc3d17 -r 9bc632ae588f src/HOL/Real/float.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Real/float.ML Thu Sep 28 23:42:32 2006 +0200 @@ -0,0 +1,503 @@ +(* Title: HOL/Real/Float.ML + ID: $Id$ + Author: Steven Obua +*) + +structure ExactFloatingPoint : +sig + exception Destruct_floatstr of string + val destruct_floatstr : (char -> bool) -> (char -> bool) -> string -> bool * string * string * bool * string + + exception Floating_point of string + + type floatrep = IntInf.int * IntInf.int + val approx_dec_by_bin : IntInf.int -> floatrep -> floatrep * floatrep + val approx_decstr_by_bin : int -> string -> floatrep * floatrep +end += +struct + +exception Destruct_floatstr of string; + +fun destruct_floatstr isDigit isExp number = + let + val numlist = filter (not o Char.isSpace) (String.explode number) + + fun countsigns ((#"+")::cs) = countsigns cs + | countsigns ((#"-")::cs) = + let + val (positive, rest) = countsigns cs + in + (not positive, rest) + end + | countsigns cs = (true, cs) + + fun readdigits [] = ([], []) + | readdigits (q as c::cs) = + if (isDigit c) then + let + val (digits, rest) = readdigits cs + in + (c::digits, rest) + end + else + ([], q) + + fun readfromexp_helper cs = + let + val (positive, rest) = countsigns cs + val (digits, rest') = readdigits rest + in + case rest' of + [] => (positive, digits) + | _ => raise (Destruct_floatstr number) + end + + fun readfromexp [] = (true, []) + | readfromexp (c::cs) = + if isExp c then + readfromexp_helper cs + else + raise (Destruct_floatstr number) + + fun readfromdot [] = ([], readfromexp []) + | readfromdot ((#".")::cs) = + let + val (digits, rest) = readdigits cs + val exp = readfromexp rest + in + (digits, exp) + end + | readfromdot cs = readfromdot ((#".")::cs) + + val (positive, numlist) = countsigns numlist + val (digits1, numlist) = readdigits numlist + val (digits2, exp) = readfromdot numlist + in + (positive, String.implode digits1, String.implode digits2, fst exp, String.implode (snd exp)) + end + +type floatrep = IntInf.int * IntInf.int + +exception Floating_point of string; + +val ln2_10 = (Math.ln 10.0)/(Math.ln 2.0) + +fun intmul a b = IntInf.* (a,b) +fun intsub a b = IntInf.- (a,b) +fun intadd a b = IntInf.+ (a,b) +fun intpow a b = IntInf.pow (a, IntInf.toInt b); +fun intle a b = IntInf.<= (a, b); +fun intless a b = IntInf.< (a, b); +fun intneg a = IntInf.~ a; +val zero = IntInf.fromInt 0; +val one = IntInf.fromInt 1; +val two = IntInf.fromInt 2; +val ten = IntInf.fromInt 10; +val five = IntInf.fromInt 5; + +fun find_most_significant q r = + let + fun int2real i = + case Real.fromString (IntInf.toString i) of + SOME r => r + | NONE => raise (Floating_point "int2real") + fun subtract (q, r) (q', r') = + if intle r r' then + (intsub q (intmul q' (intpow ten (intsub r' r))), r) + else + (intsub (intmul q (intpow ten (intsub r r'))) q', r') + fun bin2dec d = + if intle zero d then + (intpow two d, zero) + else + (intpow five (intneg d), d) + + val L = IntInf.fromInt (Real.floor (int2real (IntInf.fromInt (IntInf.log2 q)) + (int2real r) * ln2_10)) + val L1 = intadd L one + + val (q1, r1) = subtract (q, r) (bin2dec L1) + in + if intle zero q1 then + let + val (q2, r2) = subtract (q, r) (bin2dec (intadd L1 one)) + in + if intle zero q2 then + raise (Floating_point "find_most_significant") + else + (L1, (q1, r1)) + end + else + let + val (q0, r0) = subtract (q, r) (bin2dec L) + in + if intle zero q0 then + (L, (q0, r0)) + else + raise (Floating_point "find_most_significant") + end + end + +fun approx_dec_by_bin n (q,r) = + let + fun addseq acc d' [] = acc + | addseq acc d' (d::ds) = addseq (intadd acc (intpow two (intsub d d'))) d' ds + + fun seq2bin [] = (zero, zero) + | seq2bin (d::ds) = (intadd (addseq zero d ds) one, d) + + fun approx d_seq d0 precision (q,r) = + if q = zero then + let val x = seq2bin d_seq in + (x, x) + end + else + let + val (d, (q', r')) = find_most_significant q r + in + if intless precision (intsub d0 d) then + let + val d' = intsub d0 precision + val x1 = seq2bin (d_seq) + val x2 = (intadd (intmul (fst x1) (intpow two (intsub (snd x1) d'))) one, d') (* = seq2bin (d'::d_seq) *) + in + (x1, x2) + end + else + approx (d::d_seq) d0 precision (q', r') + end + + fun approx_start precision (q, r) = + if q = zero then + ((zero, zero), (zero, zero)) + else + let + val (d, (q', r')) = find_most_significant q r + in + if intle precision zero then + let + val x1 = seq2bin [d] + in + if q' = zero then + (x1, x1) + else + (x1, seq2bin [intadd d one]) + end + else + approx [d] d precision (q', r') + end + in + if intle zero q then + approx_start n (q,r) + else + let + val ((a1,b1), (a2, b2)) = approx_start n (intneg q, r) + in + ((intneg a2, b2), (intneg a1, b1)) + end + end + +fun approx_decstr_by_bin n decstr = + let + fun str2int s = case IntInf.fromString s of SOME x => x | NONE => zero + fun signint p x = if p then x else intneg x + + val (p, d1, d2, ep, e) = destruct_floatstr Char.isDigit (fn e => e = #"e" orelse e = #"E") decstr + val s = IntInf.fromInt (size d2) + + val q = signint p (intadd (intmul (str2int d1) (intpow ten s)) (str2int d2)) + val r = intsub (signint ep (str2int e)) s + in + approx_dec_by_bin (IntInf.fromInt n) (q,r) + end + +end; + +structure FloatArith = +struct + +type float = IntInf.int * IntInf.int + +val izero = IntInf.fromInt 0 +val ione = IntInf.fromInt 1 +val imone = IntInf.fromInt ~1 +val itwo = IntInf.fromInt 2 +fun imul a b = IntInf.* (a,b) +fun isub a b = IntInf.- (a,b) +fun iadd a b = IntInf.+ (a,b) + +val floatzero = (izero, izero) + +fun positive_part (a,b) = + (if IntInf.< (a,izero) then izero else a, b) + +fun negative_part (a,b) = + (if IntInf.< (a,izero) then a else izero, b) + +fun is_negative (a,b) = + if IntInf.< (a, izero) then true else false + +fun is_positive (a,b) = + if IntInf.< (izero, a) then true else false + +fun is_zero (a,b) = + if a = izero then true else false + +fun ipow2 a = IntInf.pow ((IntInf.fromInt 2), IntInf.toInt a) + +fun add (a1, b1) (a2, b2) = + if IntInf.< (b1, b2) then + (iadd a1 (imul a2 (ipow2 (isub b2 b1))), b1) + else + (iadd (imul a1 (ipow2 (isub b1 b2))) a2, b2) + +fun sub (a1, b1) (a2, b2) = + if IntInf.< (b1, b2) then + (isub a1 (imul a2 (ipow2 (isub b2 b1))), b1) + else + (isub (imul a1 (ipow2 (isub b1 b2))) a2, b2) + +fun neg (a, b) = (IntInf.~ a, b) + +fun is_equal a b = is_zero (sub a b) + +fun is_less a b = is_negative (sub a b) + +fun max a b = if is_less a b then b else a + +fun min a b = if is_less a b then a else b + +fun abs a = if is_negative a then neg a else a + +fun mul (a1, b1) (a2, b2) = (imul a1 a2, iadd b1 b2) + +end; + + +structure Float: +sig + type float = FloatArith.float + type floatfunc = float * float -> float * float + + val mk_intinf : typ -> IntInf.int -> term + val mk_float : float -> term + + exception Dest_intinf; + val dest_intinf : term -> IntInf.int + val dest_nat : term -> IntInf.int + + exception Dest_float; + val dest_float : term -> float + + val float_const : term + + val float_add_const : term + val float_diff_const : term + val float_uminus_const : term + val float_pprt_const : term + val float_nprt_const : term + val float_abs_const : term + val float_mult_const : term + val float_le_const : term + + val nat_le_const : term + val nat_less_const : term + val nat_eq_const : term + + val approx_float : int -> floatfunc -> string -> term * term + +(* exception Float_op_oracle_data of term + exception Nat_op_oracle_data of term + + val float_op_oracle : Sign.sg * exn -> term + val nat_op_oracle : Sign.sg * exn -> term + + val invoke_float_op : term -> thm + val invoke_nat_op : term -> thm*) +end += +struct + +structure Inttab = TableFun(type key = int val ord = (rev_order o int_ord)); + +type float = IntInf.int*IntInf.int +type floatfunc = float*float -> float*float + +val float_const = Const ("Float.float", HOLogic.mk_prodT (HOLogic.intT, HOLogic.intT) --> HOLogic.realT) + +val float_add_const = Const ("HOL.plus", HOLogic.realT --> HOLogic.realT --> HOLogic.realT) +val float_diff_const = Const ("HOL.minus", HOLogic.realT --> HOLogic.realT --> HOLogic.realT) +val float_mult_const = Const ("HOL.times", HOLogic.realT --> HOLogic.realT --> HOLogic.realT) +val float_uminus_const = Const ("HOL.uminus", HOLogic.realT --> HOLogic.realT) +val float_abs_const = Const ("HOL.abs", HOLogic.realT --> HOLogic.realT) +val float_le_const = Const ("Orderings.less_eq", HOLogic.realT --> HOLogic.realT --> HOLogic.boolT) +val float_pprt_const = Const ("OrderedGroup.pprt", HOLogic.realT --> HOLogic.realT) +val float_nprt_const = Const ("OrderedGroup.nprt", HOLogic.realT --> HOLogic.realT) + +val nat_le_const = Const ("Orderings.less_eq", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT) +val nat_less_const = Const ("Orderings.less", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT) +val nat_eq_const = Const ("op =", HOLogic.natT --> HOLogic.natT --> HOLogic.boolT) + +val zero = FloatArith.izero +val minus_one = FloatArith.imone +val two = FloatArith.itwo + +exception Dest_intinf; +exception Dest_float; + +fun mk_intinf ty n = + let + fun mk_bit n = if n = zero then HOLogic.B0_const else HOLogic.B1_const + fun bin_of n = + if n = zero then HOLogic.pls_const + else if n = minus_one then HOLogic.min_const + else let + val (q,r) = IntInf.divMod (n, two) + in + HOLogic.bit_const $ bin_of q $ mk_bit r + end + in + HOLogic.number_of_const ty $ (bin_of n) + end + +fun dest_intinf n = + let + fun dest_bit n = + case n of + Const ("Numeral.bit.B0", _) => FloatArith.izero + | Const ("Numeral.bit.B1", _) => FloatArith.ione + | _ => raise Dest_intinf + + fun int_of n = + case n of + Const ("Numeral.Pls", _) => FloatArith.izero + | Const ("Numeral.Min", _) => FloatArith.imone + | Const ("Numeral.Bit", _) $ q $ r => FloatArith.iadd (FloatArith.imul (int_of q) FloatArith.itwo) (dest_bit r) + | _ => raise Dest_intinf + in + case n of + Const ("Numeral.number_of", _) $ n' => int_of n' + | Const ("Numeral0", _) => FloatArith.izero + | Const ("Numeral1", _) => FloatArith.ione + | _ => raise Dest_intinf + end + +fun mk_float (a,b) = + float_const $ (HOLogic.mk_prod ((mk_intinf HOLogic.intT a), (mk_intinf HOLogic.intT b))) + +fun dest_float f = + case f of + (Const ("Float.float", _) $ (Const ("Pair", _) $ a $ b)) => (dest_intinf a, dest_intinf b) + | Const ("Numeral.number_of",_) $ a => (dest_intinf f, 0) + | Const ("Numeral0", _) => (FloatArith.izero, FloatArith.izero) + | Const ("Numeral1", _) => (FloatArith.ione, FloatArith.izero) + | _ => raise Dest_float + +fun dest_nat n = + let + val v = dest_intinf n + in + if IntInf.< (v, FloatArith.izero) then + FloatArith.izero + else + v + end + +fun approx_float prec f value = + let + val interval = ExactFloatingPoint.approx_decstr_by_bin prec value + val (flower, fupper) = f interval + in + (mk_float flower, mk_float fupper) + end + +(*exception Float_op_oracle_data of term; + +fun float_op_oracle (sg, exn as Float_op_oracle_data t) = + Logic.mk_equals (t, + case t of + f $ a $ b => + let + val a' = dest_float a + val b' = dest_float b + in + if f = float_add_const then + mk_float (FloatArith.add a' b') + else if f = float_diff_const then + mk_float (FloatArith.sub a' b') + else if f = float_mult_const then + mk_float (FloatArith.mul a' b') + else if f = float_le_const then + (if FloatArith.is_less b' a' then + HOLogic.false_const + else + HOLogic.true_const) + else raise exn + end + | f $ a => + let + val a' = dest_float a + in + if f = float_uminus_const then + mk_float (FloatArith.neg a') + else if f = float_abs_const then + mk_float (FloatArith.abs a') + else if f = float_pprt_const then + mk_float (FloatArith.positive_part a') + else if f = float_nprt_const then + mk_float (FloatArith.negative_part a') + else + raise exn + end + | _ => raise exn + ) +val th = ref ([]: theory list) +val sg = ref ([]: Sign.sg list) + +fun invoke_float_op c = + let + val th = (if length(!th) = 0 then th := [theory "MatrixLP"] else (); hd (!th)) + val sg = (if length(!sg) = 0 then sg := [sign_of th] else (); hd (!sg)) + in + invoke_oracle th "float_op" (sg, Float_op_oracle_data c) + end + +exception Nat_op_oracle_data of term; + +fun nat_op_oracle (sg, exn as Nat_op_oracle_data t) = + Logic.mk_equals (t, + case t of + f $ a $ b => + let + val a' = dest_nat a + val b' = dest_nat b + in + if f = nat_le_const then + (if IntInf.<= (a', b') then + HOLogic.true_const + else + HOLogic.false_const) + else if f = nat_eq_const then + (if a' = b' then + HOLogic.true_const + else + HOLogic.false_const) + else if f = nat_less_const then + (if IntInf.< (a', b') then + HOLogic.true_const + else + HOLogic.false_const) + else + raise exn + end + | _ => raise exn) + +fun invoke_nat_op c = + let + val th = (if length (!th) = 0 then th := [theory "MatrixLP"] else (); hd (!th)) + val sg = (if length (!sg) = 0 then sg := [sign_of th] else (); hd (!sg)) + in + invoke_oracle th "nat_op" (sg, Nat_op_oracle_data c) + end +*) +end;