# HG changeset patch # User wenzelm # Date 1475411870 -7200 # Node ID 9c0ff0c1211602df74c69712aee5e50ae3acc8e7 # Parent 3aa9837d05c7ec978946fa54c23604cd99b3c784 eliminated hard tabs; diff -r 3aa9837d05c7 -r 9c0ff0c12116 src/HOL/Library/Infinite_Set.thy --- a/src/HOL/Library/Infinite_Set.thy Sun Oct 02 14:07:43 2016 +0200 +++ b/src/HOL/Library/Infinite_Set.thy Sun Oct 02 14:37:50 2016 +0200 @@ -331,7 +331,7 @@ assume "S \ \" have "{T \ \. S \ T} = {}" if "~ (\y. y \ {T \ \. \U\\. \ T \ U} \ S \ y)" apply (rule finite_transitivity_chain [of _ "\T U. S \ T \ T \ U"]) - using assms that apply auto + using assms that apply auto by (blast intro: dual_order.trans psubset_imp_subset) then show "\y. y \ {T \ \. \U\\. \ T \ U} \ S \ y" using \S \ \\ by blast diff -r 3aa9837d05c7 -r 9c0ff0c12116 src/HOL/Library/Perm.thy --- a/src/HOL/Library/Perm.thy Sun Oct 02 14:07:43 2016 +0200 +++ b/src/HOL/Library/Perm.thy Sun Oct 02 14:37:50 2016 +0200 @@ -278,7 +278,7 @@ definition order :: "'a perm \ 'a \ nat" where - "order f = card \ orbit f" + "order f = card \ orbit f" lemma orbit_subset_eq_affected: assumes "a \ affected f"