# HG changeset patch # User nipkow # Date 1323791608 -3600 # Node ID 9c232d370244c757eadf70094677f9e827d2b321 # Parent 033cb3a668b9956b09927793c9443eb1c731544b connect while_option with lfp diff -r 033cb3a668b9 -r 9c232d370244 src/HOL/Library/While_Combinator.thy --- a/src/HOL/Library/While_Combinator.thy Tue Dec 13 16:14:41 2011 +0100 +++ b/src/HOL/Library/While_Combinator.thy Tue Dec 13 16:53:28 2011 +0100 @@ -52,16 +52,13 @@ ultimately show ?thesis unfolding while_option_def by auto qed -lemma while_option_stop: -assumes "while_option b c s = Some t" -shows "~ b t" -proof - - from assms have ex: "\k. ~ b ((c ^^ k) s)" - and t: "t = (c ^^ (LEAST k. ~ b ((c ^^ k) s))) s" - by (auto simp: while_option_def split: if_splits) - from LeastI_ex[OF ex] - show "~ b t" unfolding t . -qed +lemma while_option_stop2: + "while_option b c s = Some t \ EX k. t = (c^^k) s \ \ b t" +apply(simp add: while_option_def split: if_splits) +by (metis (lam_lifting) LeastI_ex) + +lemma while_option_stop: "while_option b c s = Some t \ ~ b t" +by(metis while_option_stop2) theorem while_option_rule: assumes step: "!!s. P s ==> b s ==> P (c s)" @@ -145,4 +142,31 @@ \ P s \ EX t. while_option b c s = Some t" by(blast intro: wf_while_option_Some[OF wf_if_measure, of P b f]) +text{* Kleene iteration starting from the empty set and assuming some finite +bounding set: *} + +lemma while_option_finite_subset_Some: fixes C :: "'a set" + assumes "mono f" and "!!X. X \ C \ f X \ C" and "finite C" + shows "\P. while_option (\A. f A \ A) f {} = Some P" +proof(rule measure_while_option_Some[where + f= "%A::'a set. card C - card A" and P= "%A. A \ C \ A \ f A" and s= "{}"]) + fix A assume A: "A \ C \ A \ f A" "f A \ A" + show "(f A \ C \ f A \ f (f A)) \ card C - card (f A) < card C - card A" + (is "?L \ ?R") + proof + show ?L by(metis A(1) assms(2) monoD[OF `mono f`]) + show ?R by (metis A assms(2,3) card_seteq diff_less_mono2 equalityI linorder_le_less_linear rev_finite_subset) + qed +qed simp + +lemma lfp_the_while_option: + assumes "mono f" and "!!X. X \ C \ f X \ C" and "finite C" + shows "lfp f = the(while_option (\A. f A \ A) f {})" +proof- + obtain P where "while_option (\A. f A \ A) f {} = Some P" + using while_option_finite_subset_Some[OF assms] by blast + with while_option_stop2[OF this] lfp_Kleene_iter[OF assms(1)] + show ?thesis by auto +qed + end