# HG changeset patch # User lcp # Date 775490842 -7200 # Node ID 9c724f7085f9ea4d3a5f1d31737988bb0ad6166a # Parent 0842a38074e72d00e29465ea2be91967402898d3 ZF/ex/PropLog/sat_XXX: renamed logcon_XXX, since the relation is logical consequence rather than satisfaction diff -r 0842a38074e7 -r 9c724f7085f9 src/ZF/ex/PropLog.ML --- a/src/ZF/ex/PropLog.ML Fri Jul 29 15:32:17 1994 +0200 +++ b/src/ZF/ex/PropLog.ML Fri Jul 29 16:07:22 1994 +0200 @@ -158,7 +158,7 @@ val thms_notE = standard (thms_MP RS thms_FlsE); (*Soundness of the rules wrt truth-table semantics*) -goalw PropThms.thy [sat_def] "!!H. H |- p ==> H |= p"; +goalw PropThms.thy [logcon_def] "!!H. H |- p ==> H |= p"; by (etac PropThms.induct 1); by (fast_tac (ZF_cs addSDs [is_true_Imp RS iffD1 RS mp]) 5); by (ALLGOALS (asm_simp_tac prop_ss)); @@ -198,12 +198,12 @@ val hyps_thms_if = result(); (*Key lemma for completeness; yields a set of assumptions satisfying p*) -val [premp,sat] = goalw PropThms.thy [sat_def] +val [premp,sat] = goalw PropThms.thy [logcon_def] "[| p: prop; 0 |= p |] ==> hyps(p,t) |- p"; by (rtac (sat RS spec RS mp RS if_P RS subst) 1 THEN rtac (premp RS hyps_thms_if) 2); by (fast_tac ZF_cs 1); -val sat_thms_p = result(); +val logcon_thms_p = result(); (*For proving certain theorems in our new propositional logic*) val thms_cs = @@ -278,7 +278,7 @@ val [premp,sat] = goal PropThms.thy "[| p: prop; 0 |= p |] ==> ALL t. hyps(p,t) - hyps(p,t0) |- p"; by (rtac (premp RS hyps_finite RS Fin_induct) 1); -by (simp_tac (prop_ss addsimps [premp, sat, sat_thms_p, Diff_0]) 1); +by (simp_tac (prop_ss addsimps [premp, sat, logcon_thms_p, Diff_0]) 1); by (safe_tac ZF_cs); (*Case hyps(p,t)-cons(#v,Y) |- p *) by (rtac thms_excluded_middle_rule 1); @@ -305,16 +305,16 @@ val completeness_0 = result(); (*A semantic analogue of the Deduction Theorem*) -goalw PropThms.thy [sat_def] "!!H p q. [| cons(p,H) |= q |] ==> H |= p=>q"; +goalw PropThms.thy [logcon_def] "!!H p q. [| cons(p,H) |= q |] ==> H |= p=>q"; by (simp_tac prop_ss 1); by (fast_tac ZF_cs 1); -val sat_Imp = result(); +val logcon_Imp = result(); goal PropThms.thy "!!H. H: Fin(prop) ==> ALL p:prop. H |= p --> H |- p"; by (etac Fin_induct 1); by (safe_tac (ZF_cs addSIs [completeness_0])); by (rtac (weaken_left_cons RS thms_MP) 1); -by (fast_tac (ZF_cs addSIs [sat_Imp,ImpI]) 1); +by (fast_tac (ZF_cs addSIs [logcon_Imp,ImpI]) 1); by (fast_tac thms_cs 1); val completeness_lemma = result(); diff -r 0842a38074e7 -r 9c724f7085f9 src/ZF/ex/PropLog.thy --- a/src/ZF/ex/PropLog.thy Fri Jul 29 15:32:17 1994 +0200 +++ b/src/ZF/ex/PropLog.thy Fri Jul 29 16:07:22 1994 +0200 @@ -32,8 +32,9 @@ "is_true(p,t) == prop_rec(p, 0, %v. if(v:t, 1, 0), \ \ %p q tp tq. if(tp=1,tq,1)) = 1" - (*For every valuation, if all elements of H are true then so is p*) - sat_def "H |= p == ALL t. (ALL q:H. is_true(q,t)) --> is_true(p,t)" + (*Logical consequence: for every valuation, if all elements of H are true + then so is p*) + logcon_def "H |= p == ALL t. (ALL q:H. is_true(q,t)) --> is_true(p,t)" (** A finite set of hypotheses from t and the Vars in p **) hyps_def