# HG changeset patch # User haftmann # Date 1417708314 -3600 # Node ID 9ced35b4a2a961dfb3c507274e349c246d04fbe8 # Parent 2b106e58a177bf1377be0b3daf92512714bc7fba cleaned up mess diff -r 2b106e58a177 -r 9ced35b4a2a9 src/HOL/Hilbert_Choice.thy --- a/src/HOL/Hilbert_Choice.thy Fri Dec 05 13:39:59 2014 +0100 +++ b/src/HOL/Hilbert_Choice.thy Thu Dec 04 16:51:54 2014 +0100 @@ -809,7 +809,6 @@ thus ?thesis using bij_betw_id[of A] by auto next assume Case2: "a \ A" -find_theorems "\ finite _" have "\ finite (A - {a})" using INF by auto with infinite_iff_countable_subset[of "A - {a}"] obtain f::"nat \ 'a" where 1: "inj f" and 2: "f ` UNIV \ A - {a}" by blast diff -r 2b106e58a177 -r 9ced35b4a2a9 src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Fri Dec 05 13:39:59 2014 +0100 +++ b/src/HOL/Word/Word.thy Thu Dec 04 16:51:54 2014 +0100 @@ -63,7 +63,6 @@ fix x :: "'a word" assume "\x. PROP P (word_of_int x)" then have "PROP P (word_of_int (uint x))" . - find_theorems word_of_int uint then show "PROP P x" by (simp add: word_of_int_uint) qed