# HG changeset patch # User paulson # Date 1572720420 0 # Node ID 9d0712c748349904df89eb9016a42b21a21d7914 # Parent 3e374c65f96b4c50281f02169b7ed019100cc77c oops — fixed symbols!! diff -r 3e374c65f96b -r 9d0712c74834 src/HOL/Analysis/Conformal_Mappings.thy --- a/src/HOL/Analysis/Conformal_Mappings.thy Sat Nov 02 15:52:47 2019 +0000 +++ b/src/HOL/Analysis/Conformal_Mappings.thy Sat Nov 02 18:47:00 2019 +0000 @@ -1271,30 +1271,20 @@ text\Hence a nice clean inverse function theorem\ lemma has_field_derivative_inverse_strong: - fixes f :: "'a::{euclidean_space,real_normed_field} ⇒ 'a" - shows "DERIV f x :> f' ⟹ - f' ≠ 0 ⟹ - open S ⟹ - x ∈ S ⟹ - continuous_on S f ⟹ - (⋀z. z ∈ S ⟹ g (f z) = z) - ⟹ DERIV g (f x) :> inverse (f')" + fixes f :: "'a::{euclidean_space,real_normed_field} \ 'a" + shows "\DERIV f x :> f'; f' \ 0; open S; x \ S; continuous_on S f; + \z. z \ S \ g (f z) = z\ + \ DERIV g (f x) :> inverse (f')" unfolding has_field_derivative_def - apply (rule has_derivative_inverse_strong [of S x f g ]) - by auto + by (rule has_derivative_inverse_strong [of S x f g]) auto lemma has_field_derivative_inverse_strong_x: - fixes f :: "'a::{euclidean_space,real_normed_field} ⇒ 'a" - shows "DERIV f (g y) :> f' ⟹ - f' ≠ 0 ⟹ - open S ⟹ - continuous_on S f ⟹ - g y ∈ S ⟹ f(g y) = y ⟹ - (⋀z. z ∈ S ⟹ g (f z) = z) - ⟹ DERIV g y :> inverse (f')" + fixes f :: "'a::{euclidean_space,real_normed_field} \ 'a" + shows "\DERIV f (g y) :> f'; f' \ 0; open S; continuous_on S f; g y \ S; f(g y) = y; + \z. z \ S \ g (f z) = z\ + \ DERIV g y :> inverse (f')" unfolding has_field_derivative_def - apply (rule has_derivative_inverse_strong_x [of S g y f]) - by auto + by (rule has_derivative_inverse_strong_x [of S g y f]) auto proposition holomorphic_has_inverse: assumes holf: "f holomorphic_on S"