# HG changeset patch # User wenzelm # Date 1205615249 -3600 # Node ID 9d2c375e242b5a0541bcffc317bdf63ca816b3f3 # Parent 89b9f7c186314a1d321bc51f32d7ba73d27449e8 avoid unclear fact references; diff -r 89b9f7c18631 -r 9d2c375e242b src/HOL/MicroJava/BV/Typing_Framework_JVM.thy --- a/src/HOL/MicroJava/BV/Typing_Framework_JVM.thy Sat Mar 15 22:07:28 2008 +0100 +++ b/src/HOL/MicroJava/BV/Typing_Framework_JVM.thy Sat Mar 15 22:07:29 2008 +0100 @@ -322,7 +322,7 @@ apply (frule is_type_pTs [OF wf], assumption+) apply clarify apply (drule rule [OF wf], assumption+) - apply (rule refl) + apply (rule HOL.refl) apply assumption+ done qed diff -r 89b9f7c18631 -r 9d2c375e242b src/HOL/NumberTheory/EvenOdd.thy --- a/src/HOL/NumberTheory/EvenOdd.thy Sat Mar 15 22:07:28 2008 +0100 +++ b/src/HOL/NumberTheory/EvenOdd.thy Sat Mar 15 22:07:29 2008 +0100 @@ -249,7 +249,7 @@ lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |] ==> ((-1::int)^j = (-1::int)^k)" - using neg_one_power [of j] and insert neg_one_power [of k] + using neg_one_power [of j] and ListMem.insert neg_one_power [of k] by (auto simp add: one_not_neg_one_mod_m zcong_sym) end diff -r 89b9f7c18631 -r 9d2c375e242b src/HOL/NumberTheory/Gauss.thy --- a/src/HOL/NumberTheory/Gauss.thy Sat Mar 15 22:07:28 2008 +0100 +++ b/src/HOL/NumberTheory/Gauss.thy Sat Mar 15 22:07:29 2008 +0100 @@ -51,7 +51,7 @@ using p_g_2 by auto lemma int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2" - using insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff) + using ListMem.insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff) lemma p_minus_one_l: "(p - 1) div 2 < p" proof - diff -r 89b9f7c18631 -r 9d2c375e242b src/HOL/Word/WordBitwise.thy --- a/src/HOL/Word/WordBitwise.thy Sat Mar 15 22:07:28 2008 +0100 +++ b/src/HOL/Word/WordBitwise.thy Sat Mar 15 22:07:29 2008 +0100 @@ -443,7 +443,7 @@ lemmas test_bit_2p = refl [THEN test_bit_2p', unfolded word_size] lemmas nth_w2p = test_bit_2p [unfolded of_int_number_of_eq - word_of_int [symmetric] of_int_power] + word_of_int [symmetric] Int.of_int_power] lemma uint_2p: "(0::'a::len word) < 2 ^ n ==> uint (2 ^ n::'a::len word) = 2 ^ n" diff -r 89b9f7c18631 -r 9d2c375e242b src/HOL/Word/WordShift.thy --- a/src/HOL/Word/WordShift.thy Sat Mar 15 22:07:28 2008 +0100 +++ b/src/HOL/Word/WordShift.thy Sat Mar 15 22:07:29 2008 +0100 @@ -1093,7 +1093,7 @@ lemma word_rsplit_empty_iff_size: "(word_rsplit w = []) = (size w = 0)" unfolding word_rsplit_def bin_rsplit_def word_size - by (simp add: bin_rsplit_aux_simp_alt Let_def split: split_split) + by (simp add: bin_rsplit_aux_simp_alt Let_def split: Product_Type.split_split) lemma test_bit_rsplit: "sw = word_rsplit w ==> m < size (hd sw :: 'a :: len word) ==> diff -r 89b9f7c18631 -r 9d2c375e242b src/ZF/UNITY/AllocImpl.thy --- a/src/ZF/UNITY/AllocImpl.thy Sat Mar 15 22:07:28 2008 +0100 +++ b/src/ZF/UNITY/AllocImpl.thy Sat Mar 15 22:07:29 2008 +0100 @@ -1,4 +1,4 @@ -(*Title: ZF/UNITY/AllocImpl +(* Title: ZF/UNITY/AllocImpl.thy ID: $Id$ Author: Sidi O Ehmety, Cambridge University Computer Laboratory Copyright 2002 University of Cambridge @@ -124,7 +124,8 @@ (** Safety property: (28) **) lemma alloc_prog_Increasing_giv: "alloc_prog \ program guarantees Incr(lift(giv))" -apply (auto intro!: increasing_imp_Increasing simp add: guar_def increasing_def alloc_prog_ok_iff alloc_prog_Allowed, safety+) +apply (auto intro!: increasing_imp_Increasing simp add: guar_def + Increasing.increasing_def alloc_prog_ok_iff alloc_prog_Allowed, safety+) apply (auto dest: ActsD) apply (drule_tac f = "lift (giv) " in preserves_imp_eq) apply auto diff -r 89b9f7c18631 -r 9d2c375e242b src/ZF/UNITY/ClientImpl.thy --- a/src/ZF/UNITY/ClientImpl.thy Sat Mar 15 22:07:28 2008 +0100 +++ b/src/ZF/UNITY/ClientImpl.thy Sat Mar 15 22:07:29 2008 +0100 @@ -121,7 +121,7 @@ "client_prog: program guarantees Incr(lift(ask)) Int Incr(lift(rel))" apply (unfold guar_def) apply (auto intro!: increasing_imp_Increasing - simp add: client_prog_ok_iff increasing_def preserves_imp_prefix) + simp add: client_prog_ok_iff Increasing.increasing_def preserves_imp_prefix) apply (safety, force, force)+ done